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1. Project Definition and Specifications 
1.1. Executive Summary 

The Vehicle Data Logging device is a senior design project sponsored by Dr. 
Yiannis Papelis from the University of Central Florida’s College of Electrical and 
Computer Science. As outlined by Dr. Papelis, the project’s intention is to build a 
compact hardware device that logs data acquired by various sensors on a passenger 
vehicle. Vehicle data that is to be logged includes: geographic location, engine RPM, 
throttle position, accelerations, speed, yaw rate, and forward looking video. The device 
must include some method of configuration as well as an easy way to retrieve the data. 
The device must meet budget restrictions to allow for widespread data gathering usage. 
Finally, the device must be portable and easy to install.  

 
1.2. Motivation 

The motivation for Dr. Papelis’ sponsoring of a senior design group was to 
provide real world data for input into his research. His research is motivated by the 
45,000 automobile accident deaths each year, of which 90% involve driver error. The 
device he is requesting for us to design will log extensive amounts of data for studying 
driver behavior and developing metrics for driver performance. The sponsored project 
was attractive to us for a multitude of reasons. We knew we would be building a solid-
state device that uses common standard components in use today. The experience 
working with standard hardware will be much more versatile than learning a highly 
specialized task to complete a project. Although each group member has different reasons 
for working on the project, we agreed that using microcontrollers, GPS hardware, 
removable media, and other input devices would be interesting for each of us. On top of 
having most of the guidelines set for us, we also had a sponsor who was intelligent and 
familiar with most of what we would be doing. It is also encouraging that if the design is 
good enough, the device could be actually used after the project is done, rather than just a 
proof of concept. 

 
1.3. Objectives 

The device is rather simple, and certainly not novel. There are many logging 
devices on the market currently. Our logging device should be able to log GPS data, 
OBDII data, video, and other optional inputs in attempts to gain as much information as 
possible about the driving conditions in the car in which the device is installed. We are 
also to minimize the cost in order to facilitate large numbers of these devices so more 
data can be acquired from more drivers. The device must also be small, portable, and 
easy to install. Of the many devices on the market that log OBDII data and GPS data, 
none of the devices log all of the required data all at once, and most of the devices that 
are close are prohibitively expensive. The project budget for the device is $400.  
 

1.4. Requirements 
The device must fulfill the OBDII, GPS and accelerometer data logging in a 

simple and inexpensive design and allow for convenient retrieval of the logged data. The 
final result must not be a bunch of loosely arranged parts but a reliable, rugged, custom 
printed circuit board. Again, total unit cost must not exceed $400. 
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1.5. Goals 

The project must meet all of the requirements and still have room for expansion. 
The device must work well, which means it must have excellent error handling and fail-
safes. The device must be well constructed, solid, rugged and small. We also aspire to 
keep the device’s cost to half of the estimated budget of $400. In addition to all of the 
requirements, Dr. Papelis has also included optional sensors that would add to the cost 
and complexity of the project. It is our goal to include all of those optional sensors. We 
realize some of the sensors may cost as much as our entire budget. For those sensors we 
aim to allow for an expansion port so the sensor may be added in future just by plugging 
it in. At that point no further PCB modifications will be necessary, maybe just small 
changes in the firmware on the microcontroller. Dr. Papelis also suggested we have some 
sort of configuration method. We do not think a web server user interface is a feasible 
option since this device will rarely have network connectivity. We do intend to have a 
robust configuration ability as well as error handling for an un-configured device. We 
also hope to add many error-handling capabilities such as video overwriting when the 
device begins to run out of storage media and a user interface to show system status. 

1.4.1. Milestones 
We plan to develop the device in a series of milestones. The first milestone was to 

acquire the majority of the components, dated mid-November. We were actually on time 
with that milestone if not a bit ahead. We have acquired all of the components and have 
begun testing them for unforeseen complications. The next milestone is a working 
prototype. We have set a date of mid-December to have a working prototype. The 
prototype must have all the devices hooked up simultaneously and working properly. 
This prototype must log data and perform all of its other required tasks successfully, 
however the software does not have to be complete or perfect yet. Once we have a 
working prototype we can test for problems with the components or circuit. After the 
working prototype is approved, we can begin development on the custom printed circuit 
board (PCB). Since the final version of the device is going to be fabricated onto a single 
PCB we will have to make sure the design is finished and working well ahead of the 
deadline in case there are problems. We expect to be contracting the PCB manufacturing 
in late January of 2007. While waiting for the hardware to be completed the software 
designer(s) will continue to work on making the software more robust. Once the 
hardware team finishes the final version of the PCB, the software team should be 
finalizing the device’s firmware. We expect this date to be around April of 2007. 

 
1.6. Specifications 

Below you will find a chart of required data and frequency of capture. 
 

Figure 1.5.1. - Project Specifications 
Data Guidelines 

Vehicle Position (> 1 Hz) 
Vehicle Velocity (> 1 Hz) 
Throttle Position (> 1 Hz) 
Engine RPM (> 1 Hz) 
Lateral Acceleration (> 10 Hz) 
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Longitudinal Acceleration (> 10 Hz) 
Forward Looking Video Images (> 5 Hz) 
Yaw rate (optional) (> 5 Hz) 
Following distance (optional) (> 1 Hz) 
User level flags (optional) undefined 
Cost Total $400  

Project Specification Chart 
 

 
These specifications have been given as guidelines only. The success of the 

project is not based on any one of these specifications. Based on research done to this 
point we do not see the need for 5Hz video especially when coupled with the storage 
requirement and negative effect on longevity of the device. The device could log data for 
days more with a lower video frame rate. If video is needed at such a high frame rate we 
may step down the resolution to accommodate the increase in video capture frequency. 
 

1.7. Budget 
The desired cost was set in the specifications of the project to be about $400. 

While deciding on hardware we actually saw many ways to cut the costs of the final 
device substantially, but we also saw increases in the amount of work needed to build the 
device. Based on discussions with Dr. Papelis, we decided to forgo the costs savings in 
favor of expediting the device’s production. The project is to be paid for entirely by Dr. 
Papelis leaving the students without a financial obligation to the project. However, due to 
delays in ordering and receiving components, we have purchased some of the 
components ourselves to save time and frustration. Dr. Papelis already had some of the 
components that we needed, some we ordered from various Internet stores, and others we 
found at local stores and from personal supplies. For example, for testing, we used our 
own OBDII cable to interface with the car, and used our own solder, LEDs and 
capacitors. We also purchased many tools and hardware that will never be used in the 
production unit, used solely for development, testing, and debugging. Waiting to be 
provided with these components would offer us substantial time delays, with no benefits. 
Referring to the following chart you can see we are significantly over budget, however, 
the cost of the device should not include the SD module, the yaw rate gyro is an optional 
component that does not have to be included. As we finalize the design we will need 
fewer miscellaneous components and be able to save money buying in bulk. 

 
Figure 1.6.1. - Budget Diagram    
Part Actual Cost Our Cost # Purchased Total Spent 
GPS Device $80.00 $0.00 2.0 $0.00 
CMOS Image 
Sensor $40.00 $40.00 2.0 $80.00 
2-Axis 
Accelerometer $40.00 $40.00 2.0 $80.00 
Yaw Rate Gyro $50.00 $50.00 2.0 $100.00 
ELM327 $35.00 $0.00 0.0 $0.00 
DOSonChip $40.00 $40.00 2.0 $80.00 
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UI LEDs (4) $10.00 $10.00 0.0 $0.00 
2GB SD Card $43.00 $43.00 1.0 $43.00 
Rabbit 3220 Core $80.00 $80.00 1.0 $80.00 
Misc Components ?? $251.60 1.0 $251.60 
Enclosure $10.00 $10.00 0.0 $0.00 
Mounting Method $5.00 $5.00 0.0 $0.00 
Parts Totals $433.00 $569.60 13.0 $714.60 

* Items highlighted are estimations, as we have not yet completed development. 

  Budget Diagram 
 

Leaving out the optional yaw rate gyro, and the SD card, which isn’t part of the 
device, brings the parts costs to about $340. That is still before fabrication, and not 
including the miscellaneous components that will be needed for final fabrication. Leaving 
us enough to pay for fabrication 

 
Figure 1.6.2. - Device Reproduction Costs     
Number of Boards 2 4 6 8 10 15 
PCB Fabrication  

$222.00  
 

$256.00   $282.00   $308.00   $334.00   $375.00  
Cost/Board  

$111.00   $64.00   $47.00   $38.50   $33.40   $25.00  
Totals  

$544.00  
 

$497.00   $480.00   $471.50   $466.40   $458.00  
w/o opt components  

$451.00  
 

$404.00   $387.00   $378.50   $373.40   $365.00  
    Device Reproduction Costs 

 
As you can see from the table above, we can get the printed circuit board cost 

down to less than $25, without components, if we want to make at least fifteen boards. If 
we factor in cost savings at this number, we should meet the budget requirements if we 
do not include optional components. It may also be beneficial to rebuild the circuit and 
software to utilize a less expensive microcontroller. We will explore other 
microcontrollers in the next section. We still have not considered the additional 
components costs such as capacitors, resistors, level shifters and interfaces, but do not 
expect the costs involved in such components to be significant enough to list. A complete 
parts list would span quite a number of pages and will need further consideration. 

 
1.8. Task Breakdown 

Since this is a group project, each member will have to contribute something to 
the project. Based on each group members’ interests and desires, we have broken up the 
tasks accordingly. Josh Mahaz our Computer Engineer will be handling most of the 
software design; Graham Smith one of our Electrical Engineers will be handling the 
power system and hardware communications; Kyle Fiducia will be handling most of the 
hardware design and serve as group nagging-pain-in-the-rear. The flowchart below 
breaks down not only the project assignments, but also gives an idea of the order they 
will be accomplished. 
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Figure 1.7.1. - Project Assignments Flowchart 
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2. Hardware 
2.1. Main CPU (Microcontroller) 

Our project requires gathering data from multiple different sources. These sources 
all have their own communications protocols, handshakes and voltage levels. The data 
sources will also need to be samples at varying rate. All of these data samples must be 
stored for retrieval in order to be useful. To collect and store all this data we need 
something to handle all these operations. The most logical choice is a microcontroller. 
The microcontroller is the most important piece of hardware in the device’s design. This 
is what will make this device useful, rather than just a collection of hardware; therefore it 
must be carefully considered. 

Factors to consider when deciding on a microcontroller: 
• Speed 
• Input/Output Lines 
• Communications Protocols 
• Power Consumption 
• Size 
• Voltage Tolerances 
• Cost 
 

2.1.1. Speed 
Speed for microcontrollers is rated in numbers much smaller than personal 

computers. Somewhere in the range of 20-50 MHz is what will be looking for. The speed 
is a limiting factor because we need to make sure that we can gather and write all of the 
required data at the specified polling rates. As we recall from the project description we 
have many different data sources each with their own framing and handshaking. So we 
need to make sure all of the data capturing can go on, including enough time for framing 
and writing the data within the specified polling interval. For instance, at 1Hz we need to 
make sure we can capture all the data, format it for the data storage and then tell our 
storage hardware to write the data. We must also allow time for encapsulation into 
packets and transmission as all of our data has specified maximum baud rates and 
required framing. Our major limiting data source is the camera. Although we are 
capturing sub-VGA we will want to allow for future high resolutions and possibly higher 
frequency video capture than the specified 1Hz. Here is a breakdown to give you an idea 
of how the processor speeds come into play. 

The video is captured at 320x240, which is a low resolution. Even at this low 
resolution we still have 76,800 pixels. If this image were a 16-bit color image (approx 
65k colors) that would equate to 1,228,800 bits. Luckily our built-in JPEG encoder will 
reduce this 150KB image down to around 10KB before delivering to our microcontroller. 
Even with such excellent compression we still have 10KB to worry about. However, we 
have been asked to allow for higher resolution capture in future, so we are going to make 
sure we can capture at full VGA (640x480). After JPEG compression, which is the most 
efficient way to extract the data, we still can have about 30KB of data. So we need to 
have a minimum data rate of 30 KBps which is 240 Kbps. This however is a bare 
minimum, as we still need to allow for framing and procedural clock cycles. We estimate 
about 10% overhead to allow for framing. With the slowest bit rate this would take about 
.07 seconds. As you can see we are well within our data transmission constraints even 
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considering this is asynchronous only and we will still need to transmit to the storage 
media.  

 
2.1.2. Input & Output Data Lines 

The next factor is the number of data lines. We will need to allow for quite a 
number of IO (Input/Output) devices each with a different number of IO pin 
requirements. As we can see we will need a minimum of 32 IO Pins. Unfortunately no 
matter how many times you go over the spec sheets, there will always be some surprises 
so even though we were conservative in our estimates, we may want to opt for even more 
IO lines than we think we need, or more microcontrollers. 

 
Figure 2.1.1. - IO Lines Chart    
Device Communication Data 

Pins 
Other Total 

Req 
GPS Device Serial Data 2 0 2 
CMOS Image 
Sensor 

I2C Data 2 2 (Power 
Seq.) 

2 

2-Axis 
Accelerometer 

PWM 2 0 2 

Yaw Rate Gyro SPI/Parallel 3 1 4 
ELM327 Serial 2 2 (Busy/RTS) 4 
Diagnostics Port Serial 2 0 2 
Future Expansion Serial 4 2 6 
Input Total       22 
DOSonChip UART/SPI 6 0 6 
UI LEDs (4) PWM 0 4 4 
Output Total       10 
Input Total       32 
   IO Lines Chart 

 
2.1.3. Interface Support (Communications Protocols) 

Even if we have plenty of IO lines to interface with our devices we have to be 
sure these IO lines can communicate with each device, as you can see from Figure 
zeJK3im4 each device has its own communication method and there are many different 
methods used. Since it is easier to find microcontrollers that support more data 
communication protocols than it is to find hardware devices that have all the same 
features with a different protocol we will opt to find match the microcontroller with the 
devices rather than the devices with the microcontroller. This also opens up a wider 
selection for future expandability. You can refer to the communication protocol section to 
find out more about each protocol. So far we find that we have selected excellent choices 
for microcontrollers as they all support all of our devices. 
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2.1.4. Power Consumption 
The next factor is the power consumption. The microcontroller power 

consumption is not really a significant factor in our design while the car is running, as we 
will be pulling power for the device from the car battery. While the car is running the 
alternator will be generating plenty of power to run all of our microcontrollers and 
devices. The device will pull its power from the OBDII port, which is specified to be 
switch with the ignition. Since not all manufacturers comply with the standard, not all 
ports have switched power, and will require our device to sense the car’s ignition state, 
switch off the peripherals, and go into low power mode. The device will need to 
continually poll the car’s ignition state for instructions to turn back on. We don’t want a 
device to know when to turn itself off but never turn itself back on. If the device does not 
have a low power mode it must run at a low enough wattage to not significantly drain the 
car battery. We do not want the user to come back to a dead battery.  
 

2.1.5. Physical Size 
Physical size constrains were not given in the project specifications. It was 

however one of our goals to make the device as compact as possible. Since smaller parts 
are available at no additional costs we are going to use the smaller parts and make the 
device as compact as possible. 
 

2.1.6. Voltage Tolerances 
Voltage tolerances are actually quite important. Each peripheral device seems to 

communicate at a different voltage and interoperability without extra hardware makes the 
design much easier. Adjusting voltage levels to power the devices is quite easy; adjusting 
the voltage levels of the communications protocols requires more complicated hardware. 
Since the RS232 port has never gained a standardized voltage specification each device 
uses its own voltage, which is rarely the same as the device with which you are trying to 
interface. Unfortunately all of the devices are similar in that they are tolerant of 5V on 
their inputs, so none of the candidate microcontrollers gain an advantage in this respect. 
 

2.1.7. Cost 
Cost is generally a significant factor when designing a device. In fact we initially 

looked for the lowest cost hardware possible, which is why we were looking at the PIC 
microcontrollers. Dr. Papelis urged us to use the hardware he already had and was 
familiar with, which was a Rabbit 3365. We later decided that this hardware, although 
seemed quite useful, as it had build in removable media, was also very limited in its use. 
Some of it’s IO pins were in use by the Ethernet port which we would have no use for, 
and it’s built-in XD media card, although fast and low power, was limited to 128MB. We 
had already found solutions capable of addressing 2GB which seemed much more 
appropriate for a data logger with video capture. The Rabbit 3365 also carries a tag of 
about $90 verses the PIC of about $9. However, once we factor in the development 
environment and development board, the costs quickly level out considering Dr. Papelis 
already owns a Rabbit development kit. The main reason we decided on the Rabbit was 
the ease of use and availability, if we were to design this for mass production, the $80 
Rabbit 3220 would be far too expensive, we would again look at the PIC microcontrollers 
that would significantly reduce the costs. 
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2.1.8 Software Environment 

Each microcontroller seems to each have its own programming environment. The 
Rabbit’s Dynamic C environment seemed quite easy to use. Dr. Papelis, our sponsor, also 
has experience using this software as well as programming the Rabbit micro controllers. 
The PIC environment was quite complicated and had a much steeper learning curve. It is 
possible to compile the C language into a compatible assembly language for the PIC as 
well as write in assembly, which is not recommended. However the Rabbit works right 
out of the box and does not require a separate programmer to load the boot loader, the 
basic operating system of the PIC.  

 
2.1.9. Microcontroller Decision 

As of this writing we have decided on the Rabbit 3220 microcontroller for use in 
our project. It has plenty of IO pins, supports all of the necessary protocols, has sample 
code for those protocols, is easy to get started with, and we already have the development 
board. 
 

2.2. Yaw Rate Gyro 
The yaw rate gyro was requested provided the costs remained under budget. Since 

we were able to find some great parts whose total cost was well under the budget 
limitation, we decided to go ahead and spec the device to include an angular rate sensor. 
With this device we opted for a digital output to again reduce the calculations and 
hardware needed. With an analog sensor we would have needed an analog to digital 
converter either built in to the microcontroller or added to the circuit. Delegating as many 
processes to integrated circuits keep our jobs easier and our circuit less complicated 
meaning less room for error. The costs are marginally if at all higher for these slightly 
more complex chips. 

This device is probably the most advanced piece of hardware we will use on this 
project. The yaw rate sensor is actually a microelectromechanical (MEMS) gyroscope, 
and works similarly to other gyroscopes. You may think gyroscopes deal with only 
rotating masses, but there are many kinds of gyroscopes. All the different types are 
beyond the scope of this project so we will focus on the vibrating structure gyroscope, 
which is what is used in the MEMS device. As you know from 
physics rotating masses tend to rotate in the same plane, simple 
kids’ toys such as the top demonstrate this principal. With 
significant enough angular momentum the top continues to rotate 
about its axis, as it gradually slows down it loses its angular 
momentum and begins to topple. 

The vibrating structure gyroscope works similarly but instead of a rotating mass 
there is a vibrating mass. Just as a rotating mass has angular momentum, vibrating 
structures tend to continue vibrating in the same plane even when the support is rotated. 
The momentum of the vibrating structure exerts a force on the support as it rotates this 
force can correlated to the amount of rotation based on the mass and vibration frequency. 
The resulting information about the change in rotation gives you a rather simple attitude 
indicator for planes, which is critical for flight. In fact insects use a very similar method 
to maintain stable flight with their halteres. The halteres look like two small antennae 

Photo: Juni 
A top is a simple gyroscope. 
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with knobs on the ends, as the insect flies the halteres are flapped rapidly. The insect has 
sensors at the base of each halter to sense a change in attitude, which can be quickly 
corrected by the rest of the flight equipment, mainly the wings. The devices are rated in 
degrees per second. We expect the yaw rate gyro with more like 80 deg/sec to be better 
suited to this application, however without knowing what to expect or finding sample 
data, we will opt for the most versatile sensor which we can configure later. 

 
2.2.1. Cost 

The cost of this device was concerning, we were given a budget of only $400 and 
to use 12.5% of that on a single sensor that isn’t all that important seems like a waste. 
Luckily the final design will be rather modular, and we can leave the availability there 
but not put the device on the board at very little extra cost. If the design ends up being 
produced in larger quantities and the yaw rate is not found to be very useful, it will be 
easy to make the boards with or without the sensor and save $50. 

 
2.2.2. Interface 

As with our other devices, of main concern to us was the interface to the 
microcontroller. We wanted to maintain digital outputs to the microcontroller so the 
microcontroller had less processor overhead in simple conversions. The base model 
digital output yaw rate gyro from Analog Devices is the ADIS16100. The 16100 has SPI 
output rather than analog output, it also has half of the number of pins of the analog 
ADXRS401 which is packages in a BGA32 footprint. The ADIS16100 is about $15 more 
than the analog counterpart which makes it not only expensive but it is also complicated. 
From start to finish this device does not make for an easy addition. The SPI protocol is 
the most complex to work with for reasons discussed in the interface section. On top of 
the protocol issues, it is also extremely difficult to work with because of its packaging. 
The ADIS16100 comes in an LGA16 package. Which makes this 8mm by 8mm device 
with 16 pins, quite difficult to hand solder for prototyping. As of this writing no 
evaluation board was available from Analog Devices. 
 

2.3 Accelerometer 
When deciding on an accelerometer our main deciding factor was again on digital 

output. As previously discussed we would prefer the device to do the analog to digital 
conversion and use the pulse width detection of our microcontroller. Of secondary 
importance was the range of the device. Car magazines such as Car & Driver do certain 
tests on skid pads. A skid pad is a large area of smooth pavement used for various tests. 
The test important for us was the lateral acceleration test. For the lateral acceleration test 
the car is driven in a circle about 300 feet in diameter and driven faster and faster until it 
begins to slid. This measures the car’s road-holding ability. Even high performance cars 
do not score higher than 1.2 Gs, where a G is equivalent to 9.8 meters/second. Based on 
our knowledge of the cars in these tests and the cars this device is aimed for, we did not 
this it was necessary for the accelerometer to measure any more than 1.2g. Therefore we 
decided on a +/-1.2g accelerometer so the full resolution would be used and a higher 
accuracy could be gained. To give you an idea of the lateral acceleration values for some 
cars, here is a chart compiled from tests done with a commercially available acceleration 
meter of in a controlled environment with friends’ cars. 
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Figure 2.3.1. - Skidpad Tests 
Car Lateral acceleration (g) 
Toyota Supra 1.07 
Acura Type R 1.05 
Toyota Honda S2000 0.96 
Nissan 300ZX 0.91 
Mitsubishi Lancer 0.90 
Ford Mustang 0.87 
Hyundai Tiburon 0.66 

Skidpad tests for some high performance cars.  
Results should exceed normal conditions for device 

use. 
 
The accelerometer is a very simple MEMS device based on the simple 

relationship force is equal to mass multiplied by acceleration (F=m*a). If every engineer 
doesn’t have that memorized by their first physics class they are headed for trouble. 
Usually the devices consist of no more than a well-quantified mass or cantilever beam 
and some sensing circuitry. The amount force the mass exerts divided by the mass will 
give the device’s acceleration.  

For our device we are going to two accelerometers to give both forward 
acceleration as well as lateral acceleration. We have not been specifically briefed in 
exactly how Dr. Papelis intends to use all of this information, but we can assume based 
on the acceleration data he can infer how people approach stoplights, turns, and et cetera. 

 
2.4 Global Positioning System 

The GPS device gives the location of the vehicle on the surface of the earth. This 
is really the most valuable data to be logged. In addition to providing the most useful 
information about the vehicle, the GPS unit will also provide a highly accurate clock for 
use in making sure the data is properly correlated to the time. There is a plethora of GPS 
units on the market today. There are only a few different GPS engine manufacturers 
though. The GPS engine is the actual chipset that does the calculations. Of those there are 
really only four popular engines, the Garmin, SiRF III, Trimble, and Sony engine. Each 
device supports different position calculation methods, varying by manufacture date and 
price. The devices also vary in the number of satellites they can track and their 
acquisition times. For our purposes almost any of these devices will work just fine. The 
main requirement for us is that whichever device we chose, we need proper 
documentation in order to use it. Of secondary importance, since most devices come with 
this, is a housing and mounting method. We would prefer to buy the device already in a 
waterproof magnetic housing with a built in antenna rather than trying to waterproof and 
secure our electronic components ourselves. 

 
2.4.1. Resolution 

Most all of the devices have similar accuracies of about +/- 5m. Some devices 
have support for various advanced computation methods such as Wide Area 
Augmentation Systems (WAAS) and Differential Global Positioning System (DGPS).  
The device does not require such advanced systems although if they are included at a 
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comparable price it is preferred. How the more advanced systems work and their effects 
are beyond the scope of this document, we just need to know they offer improved 
accuracy. 

 
2.4.2. Update Frequency 

Almost all of these devices update at 1Hz. Garmin has a special unit that updates 
at 5Hz, which is useful, but probably not for our application. We feel such a high update 
rate will be a waste of space on the storage media and far exceeds the requirements of the 
specifications. Higher update rates may also push the processing limits of our 
microcontroller beyond what we have planned for. 

 
2.4.3. Antenna Configuration 

Most devices either have a built in patch antenna or a connector for an external 
antenna. Due to losses faced in the waveguide to the GPS unit from the antenna, the built 
in patch antennas are probably better for non-amplified applications. Other factors to 
consider are if you would prefer to have a $10 antenna exposed on the roof of the car or 
the $80 GPS device with the built-in antenna. From a technical standpoint, there is little 
difference, just preference.  

 
2.4.4. Time to First Fix (TFF) 

Our device must be capable of a fairly quick TTF. Without reference data such as 
time and relative position it can be quite difficult for a GPS receiver to calculate where it 
is or which satellites to expect. If the GPS device knows approximately where it is it can 
compare the code it is receiving against the C/A code of the most likely satellites. This 
small bit of data can shave about 30 seconds off the fix time. Most devices use a small 
battery such as a watch battery to power the memory in order to retain this information 
while the device is disconnected. 
 

2.4.5. Physical Layout 
Our main concern for the GPS device is that it is either surface mountable on our 

PCB with an external antenna or it comes in a waterproof magnetic housing suitable for 
mounting on the roof of a car. This is a concern because the roof of the car and other 
objects obstructs GPS signals. Operating the GPS unit with signal blockage can 
significantly lengthen the TFF. Even glass can block the signals of satellites and reduce 
the reliability and accuracy of the data being logged. 

 
2.4.6. Cost 

GPS units are usually in the range of $50-90 depending on the packaging. Surface 
mountable GPS engines are at the low end and devices with a housing and mounting at 
the upper end. Depending on how the devices are to be used, it may end up being more 
cost effective to permanently mount the GPS antenna in the vehicles, and to just remove 
the main box containing all the expensive hardware. This will allow for a quick 
installation of the device without dangling wires as well as keep the costs low.  
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2.5. Video Capture 
One of the specifications was for video capture. Due to the popularity and 

abundance of cameras built in to cellular phones, CMOS image sensors have become 
inexpensive and high quality. After having looked at quite a number of sensors, we 
decided on a TransChip 5747. 

 
2.5.1. Resolution 

The camera resolutions are usually rated in mega-pixels (MP), but for our 
application we are not concerned with mega-pixels, we are more interested in the smaller 
sizes. We would prefer VGA (640x480 pixels) or lower resolution. The reason for this is 
based solely on the available memory space. Rough estimations of storage capacities 
suggest we can store about 2275 images at 2MP on a 2GB storage card. That may seem 
like a lot of pictures, and it is if you are taking pictures of friends and family, but when 
you think of image capture at 1Hz, that wouldn’t even last an hour. At lower resolutions 
like VGA, which to give you a relative idea is 0.3MP, you can get more like 68,000 
images, and at sub-VGA you can get more like 2 million images. For our application we 
would rather have more images per pixel rather than more pixels per image. At these 
sizes at 1Hz we can go for more than 2 days straight. Usually images are quite 
recognizable even at low resolutions. To give you another relative reference DVD quality 
images are only 720x480 pixels, and most people will agree the images on DVDs are far 
better than standard television, which is still quite recognizable. 

 
2.5.2. Frame Rate 

Based on the possible need for higher frame rates the image capture device needs 
to have the ability for much higher frame rates. Dr. Papelis said he might want up to and 
beyond 5Hz for video depending on the speed and location. Keeping in mind our 
TC5747, at the maximum frame rate, 40fps, we expect the microcontroller to run out of 
clock cycles to process the capture and storage long before the camera’s reaches its 
maximum frame rate. 

 
2.5.3. Configurability 

In order to control the output resolution the camera will need to have some sort of 
configuration ability. Configuration by UART or I2C is quite common; we need to be 
able to down-sample the images and set the output format. The TC5747’s resolution, 
sampling, output, and rotation can be configured by UART or I2C. This is quite handy, as 
you will see when we get to interface. 

 
2.5.4. Focal Length 

The focal length is actually a property of the lens, but most image sensors come 
with the lens since they are rarely interchangeable or standard. Together, the focal length 
and sensor size make up the field of view with the relationship: 2 x tan-1( L / (2 x F) ) 
where L is the length of the frame and F is the focal length of the lens. We would like a 
focal length that allows for a wide field of view (FOV) like 160º. A larger FOV would 
allow for the camera to not only capture what was going on in front of the car, but also 
inside the vehicle. This would allow for logging not only road conditions, but also the 
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conditions influencing the driver. The images would be able to log most distractions such 
as cell phone use, drinking coffee, putting on makeup, etc. 

 
2.5.5. Aperture & Focal Range 

The focal range measures the distances within which the camera can focus, for the 
camera we chose, which is fairly standard, the focal range is 40cm to infinity, meaning 
this is ideal to use for our applications as long as we don’t want to see anything that is 
closer to the lens than 40cm (15.75 inches). The aperture is also an important feature of 
the lens. The aperture is measured in F-stops and is a measure of the amount of light 
reaching the sensor. Lowering the F-stop will increase the aperture size and increase the 
amount of light hitting the sensor assuming the same shutter speed. This will also 
decrease our depth of field. For our purposes we would prefer a larger depth of field, 
meaning more of the image would be in focus. Otherwise just what the camera is focused 
on and few centimeters closer and father would be in focus. A shallow depth of field 
would leave the driver completely out of focus if the camera were focusing on the car in 
front; obviously not optimal for our applications. Also to consider is that if we opt for too 
high of an F-stop, there will be much less light entering the lens at any given point in 
time. Less light coming through the lens means we would have to leave the shutter open 
longer for a properly exposed image. Having to leave the shutter open longer for images 
taken on the highway would lead to blurry images, probably too blurry to be useful. We 
think F2.4 will be an acceptable balance to maintain proper depth of field and shutter 
speed and still maintain a properly exposed image. 

 
2.5.6. Image Sensor Type 

Image sensors come in basically two flavors; the CCD and the CMOS. CCD is an 
acronym for charge coupled device, and CMOS for complementary meta-oxide 
semiconductor. Those both don’t mean much really even what you know what that 
means, but without going into specifics, as that is far beyond the scope of this document, 
they are two different imaging technologies. Each technology has its individual benefits; 
the CCD has superior image quality, particularly in low light applications and the CMOS 
sensors require much less space and power. Although we would like to have the camera 
work well in low light conditions, space and power are certainly factors, and image 
quality certainly isn’t. We have no reason to pursue the CCD technology for our 
purposes. 

 
2.5.7. Compression 

Compression ended up being one of the largest deciding factors concerning the 
image capture device. Very similar to delegating the analog to digital conversions on the 
sensors, having the functionality built in to the camera frees the microcontroller of the 
extra compression load. The compression load would probably take too many processor 
cycles forcing us to add additional circuitry adding to the complexity of the circuit. 
Although just storing raw data for off-device processing is an option, the compression 
allows for smaller images to be stored and extends the longevity of our storage media. 
The compression technology, JPEG, is familiar to most people and can save a 
considerable amount of space, particularly when considering the sheer number of images 
the device is intended to capture. Since we are trying to keep the circuit as simple and 
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useful as possible, the built-in JPEG compression is a major advantage for the image 
sensor hardware. Such an advantage we are going to consider it a requirement. 

 
2.5.8. Interface 

The TC5747 offers just about every possible interface method, which was one of 
its biggest assets, its flexibility. Because our microcontroller has a limited number of IO 
pins, that is a general constraint facing all of our devices. The TC5747 camera allows for 
not only controlling the camera over the I2C bus but we can also off-load our compressed 
JPEG data with the same IO pins. Using only two IO pins makes the camera extremely 
flexible and leaves more IO pins open for future expansion, it also means we have fewer 
pins to hook up and worry about connecting which decreases the complexity of the circuit 
yet again. 

 
2.5.9. Cost 

Although there are some less expensive cameras on the market, unfortunately the 
less expansive cameras were produced in bulk for a specific purpose and manufacturer 
and have little to no documentation, not designed for OEM applications. The cost is about 
$40 for the TC5747. 

 
2.6. OBDII Interface 

The OBDII port offers many different bits of information about the vehicle it is 
on. You can generally retrieve information such as the fuel pressure, airflow at the mass 
air flow sensor, intake temperature, coolant temperature, throttle position, speed, RPM, 
fuel level, oxygen sensor data and much more. Not all of this information will be of use 
to us though. We are mainly concerned with accessing the throttle position, speed, and 
RPM, if these are supported. One some vehicles tested, throttle position information was 
not provided, even when we asked nicely. If we have additional time it may be nice to 
allow for complete access to the OBDII data through the device, and allow for reading 
the check engine trouble code light. 

 
2.6.1. Compatibility 

This OBDII is the second version of a generic term referring to on board 
automotive diagnostics. All vehicles after 1996 were required to have this technology and 
the connector must be located within 3 feet of the steering wheel. However standardized 
this may sound, it really isn’t. The only standard aspect of this technology is the 
connector. Through this connector you can access any one of the five different protocols 
in use today. Most manufacturers usually stick to just one of the protocols, but we have 
seen certain models use a different protocol than the manufacturers other cars. Because of 
all these incompatibilities we need a circuit that intelligently figures out which protocol 
the car has and uses it. Luckily ELM electronics has turned that complex task into a 
simple integrated circuit (IC). Below is a chart that shows the different protocols in use 
by common manufacturers in the Unites States. 

 
Figure 2.6.1. - ELM Chip Compatibility   
Manufacturer J1850 J1850 ISO9141 ISO15765 
Protocol PWM VPW ISO14230 CAN 
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ELM Model * (ELM320) (ELM322) (ELM323) (ELM327) 
Acura     X   
New Acuras       X 
Chrysler   X X   
New Chryslers       X 
Ford X       
New Fords       X 
General Motors   X     
New GMs       X 
Honda     X   
Saturn   X     
Subaru     X   
Suzuki     X   
Toyota     X   
New Toyotas       X 
Volkswagen     X   
* This is the minimum chip required, the ELM327 covers all protocols. 
  ELM Chip Compatibility 

 
2.6.2. Ease of Use 

The ELM327 is the only integrated circuit ELM makes that supports all of the 
protocols; it scans each method for readable data to determine which protocol the car is 
using. The ELM327 communicates using the simple AT command set. This is probably 
the simplest piece of hardware we have to work with, particularly because of the 
excellent documentation. There are actually other methods of accessing the OBDII data 
without the fairly expensive ELM chip, but the additional circuitry and time is not worth 
reinventing the wheel for marginal savings. The ELM327 is an easy answer to interfacing 
with just about every car in the United States built after 1996. 

 
2.6.3. Availability 

As with all of our other component availability is not always a certainty, and costs 
are always a top priority. In this instance Dr. Papelis already has a number of the fairly 
expensive ELM327 chips and some of the supporting ICs for the interface circuit. Dr. 
Papelis is also well versed in how to use the ELM chips if we were to run into trouble. 
One of the group members is also familiar with the ELM chips and has software and 
hardware compatible with the ELM chips to interface with the car’s OBDII for 
debugging and testing purposes. For those reasons and the groups’ previous knowledge 
of the popularity of the ELM chip, we have not explored the other interface methods. 

 
2.7. Laser Range Finder 

As we saw with the CMOS image sensors becoming popular in consumer 
technology, laser range finders are also becoming less expensive do to integration into 
consumer electronics. This time, however, it is the golf industry driving the prices down. 
Laser range finders are used in the golf industry to tell golfers the distance to the pin or 
sand bunker, etc. As the devices become more popular the prices go down. As of this 
writing you can find an inexpensive laser range finder for about $130. This was 
encouraging for us, as following distance, to us, is what would make our device different 
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from every other GPS logging device on the market. Unfortunately after hours of looking 
for OEM parts manufacturers we could not come up with such an inexpensive unit. The 
least expensive we could find was about $600. We had thought about disassembling the 
inexpensive consumer model for the hardware, but without proper documentation the 
device would be a project in itself to reverse engineer. What we have decided to do is to 
allow for the future expansion of our device to accommodate a laser range finder by 
leaving an expansion port. We expect the devices to become more commercially 
available for prototyping and hobby projects, and as that happens the prices will fall into 
the realm of possibility. Our expansion port can then be used to expand the functionality 
of the device. We will give a basic outline of the hardware to be used with our device. 

 
2.7.1. Range 

Since the range finder will need to track following distances of the cars in front, 
and possibly behind, it will first need to be mounted in a place free of obstructions. We 
expect somewhere on the roof, trunk, hood, or in the grill of the car. Obviously this 
makes for a more complicated mounting method. To add to the complexity, the device 
will also have to be level so it points into the cars, not the ground or sky. We expect the 
range required to be at a minimum 1m (meters), and maximum of about 100m. This 
should allow for accurate following distances from the highway, to how close drivers pull 
up to the person in front at the stop lights. 

 
2.7.2. Availability 

As previously discussed the availability is quite difficult to predict, the devices 
are currently available at higher costs than our entire project budget. We expect prices to 
drop rapidly in future. 

 
2.7.3. Accuracy 

The precise accuracy is not critical, but would be nice, as higher accuracies would 
allow us to also calculate other drivers’ speeds and at what speed differentials drivers 
decide to pass each other. The accuracy is also important to reduce noise. A more 
accurate device we would expect to have less noise, and of the noise it does not filter, we 
should be able to filter the rest with software. We should explore noise more, as it is an 
important topic for the range finders. 

Lets define car A as the car with our device installed in it, and car B as the car in 
front of car A. As car A and B approach a red light the following distance gradually 
decreases. When the light turns green and both cars pull away the distance between them 
increases, then when car B decides to turn, the distance decreases and suddenly 
drastically increases to the maximum range, as there is no one now in front of car A. That 
is one aspect of noise. Another aspect of noise occurs when car A goes around a bend in 
the road; the laser beam will bounce off of a multitude of items, guard rails, oncoming 
traffic, construction barricades, etc. This will result in erratic and unreliable results from 
the range finder. The software will have to interpret this data coupled with accelerometer 
readings and chose to either ignore the data or not. Unfortunately, without adding 
significantly to the complexity of the logging device we cannot have a tracking system to 
point the laser beam to track the vehicle in front of you while you turn or to account for 
unexpected road conditions, such as hills. 
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2.7.4. Power Consumption 

Depending on the final device that becomes available power consumption may be 
a factor. We should not overload the voltage regulators or the OBDII port with which we 
are getting power for the rest of the components. Judging by what current commercially 
available units use for batteries, we do not expect the power consumption to be a 
problem, but certainly worth looking into to prevent damage to other components. 

 
2.7.5. Cost 

As discussed the current costs prevent this sensor from being practical. As we 
have explored all of the accompanying issues of this sensor we see it becomes more and 
more costly to incorporate and get reliable useful data. However, if the costs for the 
devices were to come down significantly, it would be possible to add this sensor along 
with its accompanying hardware to provide useful, reliable data. 

 
2.7.6. Physical Size 

In addition to the many other problems with this sensor, we also have to not only 
worry about its physical size, but the physical size of the harware to accompany the range 
finder if we decide to add hardware tracking to it. We could quite easily add servos to 
track the car in front, but as we add more hardware the device gets larger and larger. 
Then we also have to consider where we will be able to mount this that would be stable 
and secure, the wind on the roof of a car may actually be too much for the mounting 
method if the device has too much drag. 
 

2.7.5. Interface 
As previously discussed we will allow for future expansion from the 

microcontroller to the rangefinder. So far we have seen most devices communicate with 
serial UART data, which is simple and easy to work with. However we do realize that 
this could be as EIA232, RS232, CMOS, or TTL levels, therefore we may want to add a 
level shifter that has a hardware enable and disable to protect our circuit. Also, we must 
consider the possibility of wanting to add the vehicle tracking system in future. Although 
we will probably have plenty of I/O pins to control the system, we do not feel that the 
microcontroller is powerful enough to do such complicated calculations in addition to all 
of the other processes it needs to execute per second. Based on this extra load we feel 
accommodating the possibility is a fruitless effort as the circuit will need to be redesigned 
for either more processors, or just more powerful processors to handle the extra load.  
 

2.7.6. FCC Regulation 
As you may be aware, the FCC has regulations on practically every frequency of 

the electromagnetic spectrum. Lasers are a particularly stringent topic because of their 
ability to inflict damage to human vision. Whichever device we decide to use, it must 
have FCC approval for its use, which will further hinder this sensor’s possibility of 
seeing the light of day. 
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2.8. Microwave Range Finder 
The microwave range finder was explored as an alternative to the laser based range-

finding systems. We found they are only more expensive and less likely to ever become 
widely available and inexpensive. They also have their own set of FCC regulations as 
well as the possibility of interfering with police radar systems that use the same 
technology and frequencies. 

 
2.9. Power Supply System 

The main power required to run the CPU and all of the devices attached to it will 
be taken from the host car’s OBDII port. The OBDII specifications require that pin 16 on 
the J1962 (OBDII) connecter be battery positive, while pin 4 is chassis ground. Battery 
voltage to the connector is defined to be switched with the vehicle’s ignition, however 
our research has shown that this can vary among manufacturers, so our device must be 
tolerant of non-standard vehicles to prevent draining the battery and logging a motionless 
vehicle. The car’s battery, which is a nominal 12V DC, should provide us with about 
13.8V DC while running due to the alternator charging. The battery voltage may sag or 
spike during events such as the car being started or the lights or air conditioning being 
switched on, as these devices cause a very short but heavy start-up demand from the 
power system. Our device must be capable of protecting itself from voltage sags, spikes, 
reverse current, and sudden power off. 

The heart of the device’s power system will be three LP2960 low dropout linear 
voltage regulators from National Semiconductor. Linear voltage regulators were chosen 
over more efficient switching regulators due to their lower noise and better ripple 
rejection that will prevent voltage fluctuations that are possible in an automotive 
situation. Many of our devices explicitly specify they require conditioned (clean) power. 
The unique features that this particular series of regulators incorporate that make it ideal 
for this application include: 

• Fixed outputs of 3.3V and 5V, and adjustable output available 
o Our devices have multiple voltage requirements 

• 500mA internally limited current 
o Over-current protection, like a fuse 

• Logic level shutdown 
o Intelligent power control 

• Status flag pin 
o Communicates status to microcontroller 

• Shut down pin 
o Controllable via the microcontroller 

• Reverse polarity protection 
• 30 V maximum input 

o Plenty of tolerance for voltage spikes 
• Narrow SO16 package that is small, but not too small 

o Surface mountable device keeps PCB small 
• Automatic thermal limiting 

o Will shut down before heat damages components 
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A possible option that we are keeping open for development is a battery backup 
system that would run on two 18650 Li-Ion cells that would charge while the device is 
powered by the vehicle and provide power once the engine is turned off or the OBDII 
cable is unplugged in order to let the device finish its operations and then safely power 
down. This could be easily extended to allow the device to run solely on battery power if 
necessary, or when using in a covert non-OBDII setup. The following diagram shows a 
high-level function-block diagram for the complete power system. 

 
 

Figure 2.9.1. - Power System Block Diagram 
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2.9.1. Efficiency 
The relatively low currents required and ample power availability while the 

engine is running decreases the need for the device to be extremely efficient while 
normally logging data. The combined power for all components running at their typical 
values only adds up to 1448.5 mW. Power can be found with the equation: 

Power = Voltage x Current 
Figure 2.9.2. - Component Power Requirements 
Part Voltage (V) Current (mA) Power (mW) 
Microcontroller 3.3 255.0 841.5 
Storage 3.3 5.0 16.5 
Yaw Rate Gyro 5.0 40.0 200.0 
Accelerometers 5.0 0.7 3.5 
OBDII Chip 5.0 9.0 45.0 
GPS 5.0 60.0 300.0 
Camera 2.8 15.0 42.0 
Total 29.4 384.7 1448.5 

Component Power Requirements 
 

The 13.8 volts could be stepped down by a switching regulator more efficiently 
than a linear regulator, however, the additional features provided by the LP2960 more 
than make up for the decreased efficiency. When running off of Li-Ion power, the 
efficiency increases as the 7.2 V provided is closer to the 2.8 V, 3.3 V, and 5 V needed by 
the components. The LP2960 will also provide features that are necessary to enable a low 
power standby in which efficiency is of the utmost importance. 

Since our devices require three different voltages, we must use three separate 
regulators to supply them. The Rabbit microcontroller and DOSonCHIP storage device 
both require 3.3 V at a combined current of 260 mA. The yaw rate gyro, accelerometers, 
OBDII interpreter, and GPS consume 109.7 mA at 5 V. The video camera will be on its 
own adjustable voltage regulator set at 2.8 V while drawing 15 mA. The dropout voltage 
is the minimum difference between the input and output voltages to maintain voltage 
regulation. The dropout voltage for the LP2960 ranges from approximately 0.07 V, for 
the 2.8V regulator, to approximately 0.3 V for the 3.3V regulator. The dropout voltage, 
for a 5V regulator, is plotted versus load in the graph below from the National 
Semiconductor datasheet. The 3.3V and 2.8V regulators have a similar plot. 
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The 5V regulator will be the first regulator to dropout during a sag in voltage due 
to the vehicles inability to keep the voltage stable. During the worst-case scenario of 
junction temperature approaching 125 C the dropout voltage for a 109.7 mA load would 
be around 0.29 V. So the minimum input voltage needed to run the device with all input 
components would be 5.29V. We do not expect the voltage of any battery in good 
condition to drop this low even during cranking (car ignition). The minimum input 
voltage required to run just the microcontroller and DOSonCHIP, at normal clock rates, 
would be 3.6V. If the voltage ever does drop below the 5.29V, we still have some room 
until the microcontroller shuts off in order to tell the microcontroller about the dire power 
situation. 

 
Figure 2.9.4. - Component Power Requirements  

Part 
Voltage 
(V) Minimum Input Voltage (V) 

Drop-Out 
Voltage 

Microcontroller 3.3 3.6 0.3 
Storage 3.3 3.6 0.3 
Yaw Rate Gyro 5.0 5.3 0.3 
Accelerometers 5.0 5.3 0.3 
OBDII Interpreter 5.0 5.3 0.3 
GPS 5.0 5.3 0.3 
Camera 2.8 2.9 0.1 

Component Power Requirements 
 
In order to estimate the overall efficiency of the device we must figure out the 

ground pin current in the regulators. Since we are not driving the regulators near their 
maximum current capacity the ground pin currents remain at quite reasonable levels. 
Estimated from the chart in the datasheet provided by National Semiconductor, we find 

Figure 2.9.3. – Voltage Regulator Dropout Voltage. Reprinted with permission. 
-National Semiconductor LP2960 Datasheet 
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that the 5V regulator will have the largest ground pin current at around 7.5mA. The 3.3V 
regulator will lose about 3mA, and the 2.8V regulator, about 1mA.  

 

 
 
 
 
 

Now that we have the total currents being drawn by each regulator the total 
efficiency can be obtained by dividing the output power by the input power. 

 
 

We see that the efficiency of the LDO regulator declines steadily as the output 
voltage drops farther below the input voltage. The ground pin current from all three 
regulators only had a small impact on the overall efficiency by contributing 10.6 mA 
toward the losses. The main cause of waste in the system stems from the relatively large 
difference between the input and output voltages present. This waste is reduced when 
voltage is supplied by two 3.7 V nominal Li-Ion cells in series, for a total of 7.4 V. 
 
Figure 2.9.6. - Power and Efficiencies  

Part 

Input 
Voltage 

(V) 

Output 
Voltage 

(V) 

Input 
Current 
(mA) 

Output 
Current 
(mA) 

Input 
Power 
(mW) 

Output 
Power 
(mW) Efficiency 

5 V 
Regulator 13.8 5 112.7 109.7 1555 548.5 35.3 

3.3 V 
Regulator 13.8 3.3 267.5 260 3692 858 23.2 

2.8 V 
Regulator 13.8 2.8 15.1 15 208.4 42 20.2 

Figure 2.9.5. – Voltage Regulator Ground pin current.  
Reprinted with permission - National Semiconductor LP2960 Datasheet 
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Total   395.3 384.7 5455 1449 26.6 
    Power and Efficiencies 

 
With the Li-Ion cells providing power the net system efficiency approaches fifty 

percent. At an input current of only 395.3mA two 2400mAh 18650 cells should last for 
approximately 6 hours of data logging. 
  

2.9.2. Low Power Mode 
A low power mode is necessary for when the device is still receiving power 

through the OBDII connector and the car is turned off, to prevent draining the car battery 
down. Since the OBDII standard calls for the battery positive to be switched with the 
ignition the device should log data whenever it is receiving power. However, we have 
found that many manufacturers do not adhere to the standard, which requires us to 
implement a low power mode which won’t quickly deplete the car battery, yet will 
monitor for a sign to power up and start logging data again.  

We will implement the microcontroller’s built-in leads for a small 3V lithium 
battery, which keeps the real time clock running and contents of SRAM preserved while 
the external power is disconnected. To keep the microcontroller in a standby state while it 
is still powered and the car is turned off we will utilize a feature of the Rabbit 3220 called 
“sleepy mode”. We can enter this mode from software based on any number of factors, 
including: RPM at zero, GPS reported speed at zero for a set length of time, or any other 
indicator we choose. When in sleepy mode the Rabbit switches from its main oscillator to 
a 32.768kHz oscillator. The reduced clock frequency cuts the power consumption from 
841.5mW down to 0.33mW allowing the device to run in the background waiting for a 
signal to turn on without depleting the car’s battery. 

The device’s ability to enter a standby mode will have the ability to be overridden 
by the user with a three way switch on the external case of the device, allowing the 
device it to be placed in either ‘on’, ‘off’, or ‘auto’ modes. The ‘on’ mode will have the 
device continuously log data while it has some form of power. Of course ‘off’ will have 
all devices powered down. Only a 12µA current pulled from the onboard watch battery to 
maintain the SRAM and RTC would be present. The ‘auto’ mode is what most users will 
use. The auto mode will start logging only when the car is running and place the system 
in a low power standby once the car’s engine has shut down. While in low-power mode 
the device will wait for the engine to be started before it powers up and starts logging 
again.  

If future testing deems it necessary to further reduce the standby current draw, the 
Rabbit microcontroller can use a clock divider to further reduce power draw. The 
32.768kHz oscillator can be reduced by a factor of 2, 4, 8, or 16. This will place the 
device in an ultra low power mode. 

  
2.9.3. Brown Out Protection 

Since the voltage output from the car’s electrical system is not always going to be 
stable, we decided it was necessary to provide for possible brown outs. These are most 
likely to occur in short bursts when high current devices like the lights and air 
conditioning are switched on. An even more important concern is the possible extended 
brown out condition created by trying to start the engine with a weak or depleted battery. 
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For a brown out to actually impact our device the input voltage must drop to the highest 
minimum required voltage for each regulator. As described in the previous section, that 
would be the minimum input voltage of 5.29V at the 5V regulator. Until the car battery 
voltage drops to this point the device will remain unaffected. In the event that the input 
voltage drops below that 5.29V threshold the output voltage will begin decreasing until it 
reaches 4.75V, a five percent deviation from its regulated 5V calibration. At this point the 
regulator will throw an error flag at its output pin with may be used to shutdown the 
regulator and alert the microcontroller if necessary. This should not be a problem for the 
ELM327, GPS, or ADXL213, as they will turn off and then back on when power is 
restored and continue to operate normally. The ADIS16100 yaw rate gyro may need to be 
reinitialized pending tests, as the SPI protocol it utilizes is more complex than the others.  
The important part is that the error reporting pin should be tied to the regulator force 
shutdown pin so that the components are never feed less that 4.75V, which could possibly 
result in damage to them. In order to prevent the false “in regulation” reading at input 
voltages less than 1.3 V we will use pull up resistors connected to the output. The timing 
diagram shown here was taken from the LP2960 datasheet provided by Nation 
Semiconductor. 

 

 
 
 

  
In order to smooth out abrupt but short duration brown out situations a simple 

large capacitor will be connected from the input voltage to ground. Since the voltage 
regulators can disable themselves until their output voltage reaches five percent of the 
typical value the relatively long charge up time of the capacitor will not adversely affect 
the circuit. The larger the value chosen for the capacitor, the longer the device is 
protected from brown outs. In the sudden absence of power a 2200uF capacitor will run 

Figure 2.9.7. – Voltage Error Timing 
Diagram. Reprinted with permission. 
-National Semiconductor 
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the entire device for .0736 seconds till the regulators see 5.29V and the 5V rail goes out 
of regulation. It will last longer in a realistic situation where voltage is decreased and not 
just disconnected. Shown below is a MATLAB simulation of capacitor values ranging 
from 1µF to 10000µF and the approximate runtimes until an output voltage reaches 
5.29V. 
 

 
 

 
 
Based on this information we will begin testing with a 4700µF 35V electrolytic 

capacitor. A capacitor of this value should yield a, worst-case, runtime of 0.101 seconds 
following a total loss of power. After the first 101 ms the 5V regulator would shut down, 
powering off the GPS, accelerometers, yaw rate gyro, and OBDII interpreter. This would 
leave just the microcontroller, storage, and camera running at a current draw of 282.6mA. 
At which point the microcontroller would sense the 5V regulator’s error pin go low and 
signal the storage device to finish its last command and halt the rest of the components. It 
would have about 19ms to do this based on a 4700µF capacitor. If this is not enough time 
to prevent file corruption on the flash card the capacitor value can be increased. The 
graph for capacitor values up to 10000µF is shown below. 
 

Figure 2.9.8. – Graph of runtimes from 13.8 V to 5.29 V 
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2.9.4. Battery Backup System 

An option that we would like to pursue at the end of this project is a Li-Ion 
battery backup system to run the device without requiring power from the vehicle. This 
would be useful for many different situations, including: 
 

• Non standard OBDII connector that lacks a 12V wire 
• Brown out protection while starting an engine with a failing car battery 
• Protection from any loss of power that would affect logging 
• Covert applications such as a roof mounted magnetic puck with no wires 
 

Li-Ion cells are lightweight, with high energy densities, even discharge curves, and no 
memory effect, making them ideal for this application. At 3.7 V nominal per cell, only 2 
cells in series would be required to power the entire device. The 18650 cell is used in 
most laptop battery packs, making them inexpensive and highly available. The two 2400 
mAh cells in series will be enough for six hours of runtime before requiring a recharge. A 
constant current/constant voltage Li-Ion changer IC like the Linear Technology LTC4054 
chip can easily handle recharging and trickle charging once power is reconnected.  
 If the cells are to be used as brown out protection in conjunction with the large 
capacitor at the input to the voltage regulators, it will need to use a relay to switch the 
voltage source from the car battery to the Li-Ion cells. This switching point could be any 
set reference voltage that indicates the car battery voltage is dipping dangerously low, 
such as 9 V. At this point the relay would fire and the cells would take over powering the 
device until the external power is restored. Below is a circuit diagram incorporating 
brown out protection using a Li-Ion battery backup. 

Figure 2.9.9. – Graph Capacitor values for runtimes from 4.75 V to 3.6 V 
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Figure 2.9.10. – Circuit Schematic of power input brown out protection 

Circuit Schematic of Power Input Brown Out Protection 
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2.9.5. Thermal Considerations 
Keeping in mind this device will be used in a vehicle that can become quite hot in 

the sun, we thought it was necessary to look at the thermal aspects of the design. Linear 
voltage regulators can produce a significant amount of heat while running. The heat 
produced increases as current and voltage difference between input and output increase. 
The only thermal paths available to dissipate the heat are to the atmosphere and to the 
ground pins tied to the copper circuit board. Our initial testing demonstrated that the heat 
buildup in the regulators was not a significant concern, as the temperatures remained 
reasonably low. We attribute the low temperatures to the fact that the regulators are 
overbuilt for the circuit that they are being used in. 

When a working prototype is built we will test it for heat buildup in the enclosure. 
If the working temperature of the regulators has risen to an unacceptable level we may 
have to add heatsinks to the chips, mount a fan to the enclosure, or add additional 
regulators to reduce the current through each one. 

All of the devices have operating ranges tolerant of the conditions we expect in 
the vehicle. 

 
2.10. Data Storage Device 
The basic premise of this data logger is to log the data it accumulates. In order to log 

all of this data for easy retrieval we need a data storage method. This is another aspect of 
our device that is benefited by the popularity of consumer electronics. Digital cameras 
and portable MP3 players have ushered in cheap, fast, and larger storage medias. 

 
2.10.1. File System Format 

The most obvious file format to use would be the same file format readable by 
about 95% of today’s personal computers, Microsoft’s FAT. There are a lot of file 
systems out there, Microsoft has a few, Apple has a few, UNIX has a few, Sun has a few, 
even Google has their own file system. But we want one that is readable easily by 
personal computers, and because of the popularity of Microsoft’s Windows, the FAT 
system has been made readable to most Windows, Apple, UNIX, Sun, etc, systems. 
Within Microsoft’s FAT, there is a choice between FAT12, FAT16, and FAT32, however 
FAT12 is fairly archaic, developed in 1977, and only addresses 32MB. FAT16 on the 
other hand will address 2GB and 4GB depending on the implementation; FAT32 will 
address up to 8TB. Obviously we need at least FAT16 support. We may need more 
addressing depending on storage media and sizes used. Currently compact flash has a 
maximum capacity of 12GB although the CF specification can support up to 137GB. 

 
2.10.2 Crash Protection 

Crash protection is important as we do not want data to be lost if the device is 
improperly shut down. We do expect to design an intelligent power supply to keep all 
critical components running until they cleanly shut down, but in the event they do not, we 
do not want lost or corrupted data. 

 
2.10.3 Data Integrity Verification 

Data integrity deals with not only corrupted data due to crashing and improper 
shut downs, it also deals with data being corrupted in transfer. Usually some sort of 
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checksum is used to check the data, but we can also use the microcontroller to read back 
the data that was just written to make sure they are the same. 

 
2.10.4 Physical Media Format 

Physical media format is a large topic considering the number of media formats 
currently on the market. However from looking at the following chart, a few of them can 
be quickly ruled out. 

 
Figure 2.10.1. - Storage Media Comparison      

Media Type -> CompactFlash SmartMedia MMC  

Varieties I II   MMC 
RS-
MMC  

Maximum storage capacity, MB 8000 12000 128 4096 512  

Theoretical maximum capacity 137 GB 
137 
GB   128 GB  

Data read speed, MB/s 40 40 2      
Data write speed, MB/s 40 40        
Read/write cycles     1,000,000 1,000,000  

Media Type -> Memory Stick   
Varieties Standard Pro Pro Duo Micro   
Maximum storage capacity, MB 128 4096 4096     
Theoretical maximum capacity 128 MB 32 GB   
Data read speed, MB/s 2.5 20 20 20   
Data write speed, MB/s 1.8 1.8 10     
Read/write cycles           

Media Type -> xD Secure Digital 

Varieties   
Type 

M Type H SD miniSD microSD 
Maximum storage capacity, MB 512 2048 1024 4096 2048 2048 
Theoretical maximum capacity 512 MB 8 GB 8 GB 128 GB 
Data read speed, MB/s 5 4 15 20    
Data write speed, MB/s 3 2.5 9 20    
Read/write cycles             
  Storage Media Comparison   

 
The ones that can be ruled out are: SmartMedia, which has a maximum capacity 

of 128MB; and MMC, which has a maximum number of read/writes. The xD cards are 
also fairly limited in capacity right now and have relatively low read/write speeds. Not 
many vendors provide hardware for Sony’s proprietary Memory Stick technology so that 
not only increases the costs but also decreases the likelihood of being able to find 
hardware in this format. So that leaves us with two options left, the CompactFlash and 
the Secure Digital, both of which have great read/write speeds. 

 
2.10.4.1. Physical Size 

The Secure Digital cards are quite a bit smaller than the Compact Flash 
cards, however even though size is a constraint on our device, the difference the 
card will make in the overall size of the design is not worth worrying about if it 
allows us to use better technology. 
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2.10.4.2. Availability 

Both the Secure Digital and Compact Flash cards are readily available, 
even a local retailers, at comparable prices. Both storage cards are available in 
sizes that are great for data logging purposes, and both are proven in the industry 
to be reliable data storage devices. The hardware used to interface with them 
although not available at local retailers, is also fairly easily to find for both 
formats. Based on the number of components for each format, it appears that the 
Secure Digital format is far more popular.  

 
2.10.4.3. Power Consumption 

Neither the Secure Digital nor the CompactFlash use much power, but our 
research has shown the Secure Digital to still use less power than the 
CompactFlash. Based on the differences between the two, which is not much, 
power consumption will not be a deciding factor.  
 
Both the Secure Digital and CompactFlash formats are viable storage media 

formats, but because the Secure Digital is smaller, requires less power, and has more 
hardware easily available for it, we feel the Secure Digital format is the best choice for 
our device. 

We decided upon a device from Wearable, Inc called the DOSonCHIP, which is 
available in a package that interfaces with an SD card. This chip handles all the low level 
file system commands and allows for higher level commands that we are familiar with. 
For example, we can tell the DOSonCHIP module “md A:\NEWDIR” and the device will 
create a new directory on the root of the removable media card called “NEWDIR.” The 
device will them send back a result code to tell us whether the command succeeded or 
failed and, if it failed, why. 

 
3. Software 

3.1. Programming Language 
3.1.1. Preface 

 Dynamic C is a development platform for the Rabbit microprocessor, which 
bundles all of the development tools into a single application. It was developed by Z-
World and Rabbit microprocessors and comes bundled with all Rabbit kits. Dynamic C 
uses the C programming language as a backbone with a few exterior variations and 
numerous behind the scene differences that allow a high level language such as C to be 
used on a low level platform such as a Rabbit microprocessor. Its key features include 
cheap price, clean simplistic development environment, powerful debugging tools, 
function chaining, and multitasking. Dynamic C also includes numerous pre-written 
libraries and sample programs allowing for quick and easy device interfacing and 
software development. 

 
3.1.2. Rationale 
 A development platform specially designed for Rabbit microprocessors that is 
shipped with all Rabbit development kits as well as can be individually purchased 
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through Rabbit and a handful of other vendors for around one hundred dollars. Being left 
with only one option for a development environment at first look may seem like a 
hindrance. But after working with Dynamic C and becoming familiar with its rich 
featured editor and debugger, huge selection of libraries and code examples, efficient 
compiler, and lighting fast PC to rabbit memory transfer rates we quickly learned it was 
an extremely easy to use and powerful application that would easily satisfy all of our 
requirements. 
 

3.1.3. Included Tools 
 With Dynamic C programmers don't have to worry about obtaining separate tools 
and licenses before they can begin development because the software comes bundled 
with an editor, compiler, linker, loader, and debugger. 
 

3.1.3.1. Editor 
 The Dynamic C editor uses a Notepad-type interface matched with a rich feature 
set to provide an exemplary editor. Features include: 
 

• Syntax highlighting which differentiates different source code elements by 
displaying them as different colors. Users can easily edit the default color scheme 
of syntax highlighting to better match an editor scheme they have grown 
accustomed to. 

 
• Code templates allow users to quickly insert common code sections by simply 

right clicking in the editor environment. A window then prompts for a code 
section desired for insertion, such as a default if statement or comment box. 
Through the template options menu users can edit, create, and delete their own 
code sections to speed up development. 

 
• Grep utility allows users to search for variables and text strings in a file as well as 

its directories, making searching for data in thousands of lines of code drastically 
faster.  

 
• Column Mode gives users the ability to select sections of code based on their 

column location, after selection users can copy, paste, cut, shift code left/right. 
 

• Bookmarks can be set at any location in a body of code by pressing ctrl-shift-# 
and with ctrl-# the page will jump to user set bookmark locations. 
 

• Bracket matching is done via keystroke ‘ctrl-[‘ before the bracket you wish to find 
the delimiter for, once pressed the page will jump to the desired location.  

 
3.1.3.2. Compiler, Linker, and Loader 

 To improve ease of use, compiling, linking, and loading are executed through one 
function. The compiler itself has a tough job in Dynamic C because compiling for a 
microprocessor and a PC are quite different. For example with a PC a compiler can 
assume the existence of an operating system and a clean slate ready for the program, but 
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for a microprocessor this can not be assumed, error flags might be thrown due to power 
cycles, watch dogs, and/or system errors. Dynamic C's compiler also handles function 
prototypes differently, instead of numerous include files; function prototypes are handled 
within the source libraries. It also differs in that it compiles the entire program from the 
source code and libraries, unlike typical compilers, which use separate modules, which 
are then linked. 
  

3.1.3.3. Debugger 
 Dynamic C's debugger comes with all the standard debugging tools which will be 
briefly described below, all of which can be toggled on and off through the project 
options menu. 
 

• Printf() displays user defined messages to the stdio window, serial port, or file 
valuable to show application progress without introducing interrupts.  
 

• Breakpoints can be created anywhere in the program by the user, upon execution 
the program will run at full speed till it reaches the breakpoint. At which point a 
system screen shot is presented in the debug window and users can choose other 
debugging tools or continue program execution.  
 

• Single stepping is one of the available debugging tools after a breakpoint has been 
reached, the name says it all, it allows users to advance through the C or assembly 
code one line at a time. And just how it sounds, it is very slow; it can also cause 
problems with any external device the Rabbit is attempting to talk to. 
 

• Watched expressions can be placed on any C expression and allow the user to 
review the value of the watched expression after the program has finished 
execution. 
 

• Memory Dumps present the data located at an address to the user, this is handy in 
ensuring strings and variables are sending and receiving the expected values and 
ensures memory remains accurate. 
 

• MAP Files are generated post program execution and provides a summary of the 
entire programs memory usage, particularly useful when attempting to optimize 
memory efficiency. 
 

• Assert Macros allow programmers to state a required condition, if the condition is 
not met at the time of the assert macro the program is halted and an error message 
will be returned.  
 

• Execution Trace provides a means of post execution program flow checking, if a 
program is deviating from the expected path at an unknown point enabling 
execution tracing and reviewing the post execution report will show exactly 
where the program has a bug. 
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3.1.4. Dynamic C over and above C 
 As stated in section 3.1.3.2 it is impossible to take C code written for a PC and 
directly load it into a microprocessor. Code manipulation to handle differences such as 
read only memory and assembly language is required to make it microprocessor friendly. 
Listed below are other features added to Dynamic C to ensure a clean microprocessor 
interface, make development less tedious, and in some cases, just make C porting for 
microprocessors possible. 
 

• Function chaining enables declared blocks of code, usually initializations and 
recovery routines, to be called upon by multiple functions. When called, all 
portions of the function chain will execute, initializing the system or returning it 
to a safe state after a system error is encountered.  
 

• Mixed Assembly and C is supported in dynamic C. Users only have to enclose 
their assembly code in the #asm and #endasm tags to program in the assembly 
environment. 
 

• Protected variables are those that are defined by a prefaced protected tag followed 
by the type and variable name. Protected variables are stored within the rabbit's 
battery-backed random access memory, which can easily be recalled if power loss 
or other critical failure occurs. 

 
3.1.5. Dynamic C Pitfalls  

 Differences between Dynamic C and C are outlined below, it is important to 
consider these differences before beginning software development. 
 

• Assigning a value to a variable during its initialization will cause it to be stored  
as a read only item in memory. To prevent this from happening do not assign a 
value until required later in the program. 
 

• Static variables are defined by #GLOBAL INIT, but unlike normal C where these 
values are automatically set to zero, Dynamic C does not automatically assign 
values to these variables because of the possibility they will be receiving data 
from the system's battery-backed RAM. 
 

• The #include directive is not used with Dynamic C, in its place is the #use 
directive, refer to 3.3.2 for further detail. 

 
3.1.6. Multitasking 

 Multitasking is a single processor non-parallel system attempting to artificially 
create parallel processing. Of course a single processor, no matter what the speed, will 
never be able to execute more then one instruction at a time. Instead the system uses 
delays in one task to allocate time to another task speeding up the overall application 
execution time.  
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These delays are ones set by programmers so that devices are polled at a staggered pace. 
It would be very simple to just put each polling task in one after the other with no delays 
and no consideration for the tasks around it, but this would result in a vast amount of 
resources wasted on tasks like polling the GPS numerous times per second when really 
our accelerometers and yaw rate gyro needed those resources. Or for instance if our 
camera system was polling and storing data to the Secure Digital card as fast as the 
processor can run even two gigabytes of space it would be filled in less then an hour. So 
to prevent the devices that only need to be polled occasionally from draining resources 
and filling memory we set a delay so that it only executes as much as needed. 
 

3.1.6.1. Multitasking Methods 
 Dynamic C has two methods of multitasking, preemptive, which uses slice 
statements, and cooperative, where tasks share the processor when they are in a waiting 
state. Both methods of multitasking could satisfy the software requirements of our 
project, but due to the less intrusive behavior and more simplistic nature of cooperative 
multitasking, it will be used for our program. 
 Cooperative multitasking is the less intrusive of the two multitasking methods. 
Programmers declare a main system loop and then costates within it. The costate 
coordinates the sharing of processor power during delays. On the first run of a costate all 
statements are executed until a waitfor command is encountered, the system then breaks 
to work on other tasks. It will return after the allotted time has passed to finish execution. 
The figure below illustrates the program flow of cooperative multitasking operations. 
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 For the current build of our software we have the GPS and accelerometer sensor 
working in separate costates. The accelerometer requires polling much more often than 
the GPS, so the system executes the first portion on the GPS instructions then polls the 
accelerometer several times before returning to poll the GPS again. 
 

3.1.6.2. Modifying Costate Flow  
 Besides simply initializing costates to run as outlined above, we will also be 
taking advantage of Dynamic C's other costate initialization options that allow a costate 
to only run one time unless it is re-flagged to execute again. Cooperative multitasking 
also has an abort option, which exits the costate and will never re-enter it. 
 The single costate initialization is done by declaring a named costate as init_on. 
Once this is done, it will only complete one full execution and then will be ignored until 
it is specifically flagged to be reset. We will be implementing this use of costates for our 
boot cycle. When initial power is given to the system, a diagnostic cosate will be run to 

Figure 3.3.1. - Program flow for a costate containing statement. 

Costate Flow Control 
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verify all devices are operational. After it has completed successfully it will remain 
dormant unless there is a call for a system reset. At this time it will be flagged to execute 
once again. 
 The ‘yield’ command allows the costate to operate without delay by skipping its 
lower portion. This method is needed if we are unable to poll a sensor quickly enough.  
 

3.1.6.3. Importance of Multitasking 
 The multitasking concept is particularly important for our project due to the large 
number of external sensors we are using. The more sensors that require delays, the more 
efficient costates will make the program. This is because without multitasking one has to 
spend large amounts of time dealing with the tedious task of finding the perfect mixture 
of looping individual functions and intermingling other tasks at just the right time to get 
the desired polling rate. If a sensor’s polling rate needs to be tweaked, the entire code 
would have to be modified. Multitasking saves us this potential heartache because delay 
modification is as easy as changing a single number in the polling function. That 
function’s polling rate is modified without detrimentally affecting any other functions. It 
is also a possible future upgrade for the program to self modify its timing delays for 
different devices. This would allow in certain conditions, such as an emergency mode, all 
the sensors to poll twice as fast as normal in order to acquire as much data from the 
vehicle as possible in a short burst. Without the simplistic delay modification capabilities, 
performing this task would be nearly impossible. 
 

3.1.7. Libraries 
 Another benefit of Dynamic C is its dozens of communication and protocol 
libraries. Within each section devoted to the software for the sensors is a section 
discussing the libraries directly working with the sensors. As an example, within the GPS 
section the GPS.LIB is outlined, including an overview, explanation of the functions we 
are using, and any notes about the library. But the basic library that the GPS.LIB uses to 
serially communicate with the GPS is not covered, that is what this section is for. A 
dissertation of the basic libraries and their functions within Dynamic C that we will be 
using for our project is included. These libraries control the heart of the interfacing by 
setting baud rates, manipulating the status of ports, and controlling data through said 
ports. Having these libraries and functions bundled with Dynamic C drastically cuts 
development time. An experiment with so many sensor interfaces in such a short period 
of time would be impossible to accomplish if all the interface libraries had to be written 
before development began. 
 

3.1.7.1. Libraries of Interest 
RS232.LIB: This library establishes the functions to serially send and receive single and 
multiple characters of data through a RS232 converter.  
SYSIO.LIB: A library at the heart of the Rabbit Module, it defines the systems registers 
as well as handles prep work for quadrature decoding. 
SYS.LIB: Home of many of Dynamic C's data structure algorithms, program override 
commands, and hardware modification. 
The functions from these libraries slated for use in the project are listed below in the table 
below, which outlines function name, description, sending parameters, and returned data. 
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Core Libraries: 
      

Library Functions Description Parameter 
Return on 
success 

Return 
on 
failure 

RS232.LIB Int ser$open(long) 
Open serial port & set 
baud rate Baud rate 1 0 

  Char ser$getc() 
Pull character from 
serial port - Next char -1 

  Int ser$putc() 
Write character to 
serial port Character 1 0 

  Int ser$puts() 
Sends a string over 
serial port String 

Chars 
sent 0 

  Void ser$close() Close serial port - 1 1 
  *$=port A,B,C,or D         
            

SYSIO.lib Int RdPortI(int) 
Read internal I/O port 
specified 

Address of 
internal port 

Integer 
pulled 
from port   

 
 
 
 

3.1.8. WatchDog 
 The Rabbit CPU has a built in watchdog to monitor the hardware for any 
occurrences of infinite loops or hardware faults. If one is encountered the system will be 
reset and the boot sequence will handle re-initialization of the system. The Rabbit also 
has ten virtual watchdog timers that require user initialization and periodic stepping. At 
this time we will be using only the single hardware watchdog unless a problem arises. 
 

3.2. Memory 
3.2.1 Rabbit Memory Management 

 Our Rabbit’s processor works with a logical address space of 16bit/64k with 
segments blocks of 4k, Dynamic C on the other hand, with the help of on chip memory 
management units works with physical address space of 20bit/1M with banks of 256k.  
 

3.2.1.1 Memory Management Unit 
 On the Rabbit module the on chip memory management unit (MMU) handles the 
conversion of logical 16-bit addresses to physical 20-bit addresses. The logical space that 
the memory management unit works with is divided into four sections: xmem, stack, 
data, and base. The user can modify the address ranges of the four sections by changing 
the values within XPC, STACKSEG, and DATASEG. But changing the values at these 
locations can make the system extremely volatile. We do not think it will be needed for 
our application, seeing as how the majority of our memory accessing, which would 
require memory restructuring, will be on our main storage DOSonCHIP device. 
 

3.2.1.2 Memory Interface Unit 

Figure 3.1.2. - Outlines main functions used from the main libraries. 
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 After the MMU has performed the address conversion, the Memory Interface Unit 
(MIU) controls data access. There are five registers under the MIU but only four of them 
are of interest to our project: MB0CR, MB1CR, MB2CR, and MB3CR. Each of these has 
the capability to enable wait states, chip select, write enable, output enable, line usage, 
and write protection for its associated 256K block of memory. The chart below shows the 
values to set the different registers at to enable different settings. 
 

Memory Block Settings 
Bit(s) Value Description 

0 4 wait states 
1 2 wait states 

10 1 wait states 
7, 6 11 0 wait states 

5 1 Invert address A19 
4 1 Invert address A18 
3 1 Write-protect memory 

0 Use /OE0, /WE0 
2 1 Use /OE1, /WE1 

0 Use /CS0 
1 Use /CS1 

1, 0 1x Use /CS2 
Figure 3.2.1. - Memory Block Settings 

 
3.2.2. On Board Memory vs. DOSonCHIP 

 After reviewing direct memory modification in Dynamic C we learned it was both 
complicated and dangerous. Placing and retrieving a file in a set location is not as easy as 
just stating place/fetch file at this address. The programmer has to work with the address 
converters, which are usually transparent, to hunt down their data. The dangerous aspect 
comes into play when memory-mapping modifications are performed. The Rabbit's 
highest level of flash memory is unstable and only guaranteed to work for 100,000 
writing cycles, if a programmer inadvertently addressed this memory location for the 
application to use normally, in a weeks time the memory could fail and destroy the 
device. In the Rabbit memory section above, the memory system is discussed because it 
will be used by the program for storing temporary data at its default settings. However, 
the methods of manually accessing and modifying memory or changing the memory 
space layout are not discussed because there is a better means of storing our data. Aside 
from looking for a simple non-volatile memory system, our device is also required have a 
large amount of external removable memory because we will have so many devices 
polling, in some cases very quickly. All the returned data has to be stored somewhere 
with a lot of space that can be easily removed for reviewing. Storing to the on board 
memory of the Rabbit would work, but would fill up its small memory cache very fast, or 
in our case a very short drive. Then you would have to worry about either removing the 
system or bringing a computer to it to download the data. Otherwise, if the device is shut 
down before the information is pulled, the only data that would remain is in the battery-
backed sections. Instead of dealing with all this, we are using a DOSonCHIP module that 
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uses a Secure Digital card to store all of our data. Using a Secure Digital card gives us 
easy to use, non-volatile, and vast storage space compared to the Rabbit's built in 
memory. 
 

3.2.3. DOSonCHIP Memory System/FAT32 
 The DOSonCHIP memory management system is handled by its own on board 
File Allocation Table (FAT), which has support for both FAT32 and FAT16. Exactly 
how it interfaces with the FAT system is undocumented so we are only able to discuss the 
FAT system itself. The FAT32 file system has three sections; first is the boot sector, 
which contains file system information, locations of other system files, and operating 
system boot loader code. Second is the FAT region, that contains the file allocation table, 
which tells the system which clusters are allocated to data and which allocated to 
directories. Third is the data region, where the data and root directories are written. 
Actually filling the data region with the FAT file system works by breaking its available 
memory up into predetermined blocks ranging in size from 2K to 32K. When a file is 
written to the device it begins to fill one of these blocks, if the file exceeds a single box 
the location of the address of the next block is written in the file allocation table. This is 
done because the next block for the file might not necessarily be written in the next 
logical block in memory. There are many differences between the FAT32 and FAT16 
system, but much of them are not applicable because they deal with exceeding the 2-
gigabyte threshold. The difference that does apply is the fact that the FAT32 and FAT16 
have different capabilities when it comes to the block sizes discussed above. A FAT32 is 
able to map a larger number of blocks, with a larger number of smaller block sizes files 
that are less likely to leave unused block space, thus being more space efficient. This was 
the deciding factor in choosing the FAT32. 
 

3.3. Device Software Interface 
 Within this section each device, its required libraries and functions, and pseudo 
code, will be analyzed. The pseudo code is written for its initial test phase where only one 
sensor at a time is connected and tested. Once each has passed the initial phase the code 
will be slightly modified for the final build. This includes moving all initialization 
commands from the multitasking loops to within a boot sequence function. This way all 
the devices will be initialized once instead of during each iteration of their multitasking 
loop. Another change will be removing the Secure Digital storage commands from all of 
the multitasking loops and moving them to a single multitasking loop dedicated solely to 
storage of all accumulated data in the polling master cycle. These are the only two 
modifications required to transform the presented pseudo code, if it initially works 
properly, into the final software build. 
 

3.3.1. Dual Axis Accelerometer 
 The dual axis accelerometer will be communicating with the Rabbit module via 
pulse width modulation (PWM). To decode a pulse width modulated input, quadrature 
decoding matched with Dynamic C's included R3000.lib file is required. The functions of 
interest within this library are as follows: 
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3.3.1.1. R3000.LIB Function Descriptions 
-void qd_init(int iplevel) 
Uses SYS.lib's SetVectIntern, qd_isr, and WrPortI to enable the quadrature encoder, its 
corresponding port (F), and specifies address space to pull initial test data. If test ran 
successfully the error flags and high counters are reset and program flow is passed back 
to the main function. 
 
-long qd_read(int channel)  
Polls the desired one of two channels on the quadrature enabled port repeatedly until it 
either receives a reading or an error flag. If error flag received it re-polls, else if it 
receives a high signal from the accelerometer it adds one to the temporary counter. If at 
that instant the accelerometer is sending a low signal zero is added. Because of the fact 
that the running total of highs is only manipulated on calls of qd_read many calls are 
needed in a cycle to get an accurate reading. 
 
-void qd_zero(int channel) 
Resets the corresponding channel's temporary counter back to zero. 
 

3.3.1.2. Translating Raw Data to Acceleration 
To translate the highs and lows being received from the accelerometer into actual 
acceleration data you must find the percentage of highs you are polling from the device. 
Then with the aid of a reference chart from “Analog Device” you can find the current 
acceleration. The acceleration sent as a function of the PWM duty cycle. Fifty percent 
duty cycle indicates no net acceleration, positive or negative accelerations are given by: 
Acceleration (g) = (Change in duty cycle)/(30%). 
 

3.3.1.3. Pseudo Code and Flow Chart 
-initialize reading to accept  returned data from polling the accelerometer  
-initialize avgDown to store the average amount of time the accelerometer sends a low 
signal 
-initialize avgUp to store the average amount of time the accelerometer sends a high 
signal 
-initialize UpCounter to store the amount of high signals the accelerometer sends 
-initializes DownCounter to store the amount of low signals the accelerometer sends 
-initializes Lcounter to store the amount of iterations Multitasking Loop One has 
performed 
-initialize quadrature decoder and port F to receive PWM data 
-initialize array ACCarray with “Analog Devices” acceleration reference chart 
-reset channel one's high counter 
-set all variables equal to zero so as not to corrupt all the associated counters 
 
Loop Forever: 
Multitasking Loop One: This loop will execute every twenty milliseconds, which is set 
by the delay at the beginning of the loop. 
 
-insert twenty millisecond delay 
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-set reading equal to quadrature decoded data polled from port F with R3000.LIB 
qd_read 
IF reading is less then zero an error in polling has occurred  
 -reset channel one's high counter which will reinitialize it back onto a valid 
polling   frequency 
 -set reading equal to quadrature decoded data polled from port F with R3000.LIB  
 qd_read 
 
-increment Lcounter to have a running total of amount of times Multitasking Loop One 
has run 
 
-set UpCounter equal to reading 
-set DownCounter equal to Lcounter minus UpCounter 
 
End Multitasking Loop One 
Multitasking Loop Two: This loop will run every one hundred milliseconds, which is set 
by the delay at the beginning of the loop. 
 
-insert one hundred millisecond delay 
-divide UpCounter by Lcounter and assign result to avgUp 
-divide DownCounter by Lcounter and assign result to avgDown 
-using avgUp ACCarry pull associated acceleration data converting and result store in 
accelRate 
-store accelRate to Secure Digital card 
-output avgUp to Dynamic C display window to view validity of data *For Testing* 
-reset Lcounter, UpCounter, and DownCounter to zero so a new acceleration rate can be 
found for the next cycle 
-reset channel one's high counter 
 
End Multitasking Loop Two 
End Loop Forever 
 
Below is a flow chart illustrating accelerometer pseudo code. 
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Figure 3.3.1. - Accelerometer data polling, conversion, and storage. 
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3.3.1.4. Pseudo Code Notes 
The time delays set for each of the multitasking loops as of now are arbitrary, 

based on preliminary testing of the device set at these delay rates the outputted 
percentages are as expected, but far from precise. Attempts made to lessen delays to get 
faster polling and overall shorter period were not successful, data outputted looked very 
similar to the original one and five hundred millisecond delays within the pseudo code. 
We have surmised that our problem is not coming from the delays we are setting but 
possibly the natural delay required for the output to be sent to the PC for us to view for 
testing. It was decided further testing would be conducted using the Secure Digital 
memory unit and we would no longer need the data to be sent to the PC. Once this is 
done we will continue to test and tweak our delays to get accurate acceleration rates. 
 

3.3.2. Yaw Rate Gyroscope 
The yaw rate gyro will be communicating with the Rabbit via Serial Peripheral 

Interface (SPI). Communicating with SPI requires a master and a slave; the Rabbit will 
be acting as the master tasked with clock generation and data flow. The yaw rate gyro on 
the other hand will be the slave and control serially shifting data in and out. The Rabbit 
requires the inclusion of the SPI.LIB, the functions of interest within this library are in 
the next section. 
 

3.3.2.1. SPI.LIB Function Descriptions 
void SPIinit(void) 

Using the previously user defined port (A, B, C, and/or D), enables the desired 
port for UART output and sets the second half of the port as the SPI bit rate. Once 
complete it initializes itself as either a master or slave based on user definitions previous 
to the call. We will never be setting it as slave because it prevents us from having other 
devices connect to it properly. As a master, it prepares the clock for master mode and 
passes control back.  
 
Int SPIWrRd(void *pointer, void *pointer, int) 

This function handles data flow through the Rabbit using the three parameters 
passed to it. Parameter one is the address of the data the system has to send. Parameter 
two is the address of where the received data needs to be saved. The third parameter is 
the size of the data. The system first stores the data in from the function in the appropriate 
locations, then pulls anything at the address of parameter one. Once completed data is 
again sent and received. 
 
Int SPIWrite(void *pointer, int) 

This function controls sending data through the SPI port. Parameter one is the 
address of the data to be sent through the SPI and parameter two is the size. 
 
Int SPIRead(void *pointer, int) 

This function controls reading data in from the SPI port. Parameter one is the 
address of the data to be stored from the SPI and parameter two is the size. 
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The user sets the addresses mentioned above so a safe address for storage on the Rabbit 
module will have to located. The address sent to the yaw rate gyro controls different 
functions, a zero address sent to the system will initialize the gyroscope, where as a one 
address will initialize the temperature sensor. 
 

3.3.2.2. Translating SPI Data Flow to Yaw Rate 
 To translate data flow through the system into the yaw rate the size of the data 
being stored must be analyzed. The size of data received from the yaw rate gyro is 
directly proportional to the yaw rate itself. So the conversion is as easy as getting the size 
of each block of data the Rabbit is being instructed to store each cycle. 
 

3.3.2.3. Pseudo Code and Flow Chart 
-initialize the use of SPI.LIB 
-initialize dataSize to store data size of data received from yaw rate gyro 
-initialize YRGerr to store error flag for yaw rate gyro 
-initialize pointer safAddress pointed at a safe address location to store received data 
-initialize array YRGarray with “Analog Devices” yaw rate gyro reference chart for any 
conversions necessary 
-set all variables to zero to prevent use of possible old data at memory locations 
-set port to be used for SPI communication 
-set system for SPI master mode 
-initialize desired port for UART output and system for master mode 
-using a separate line on the yaw rate gyro discussed in the hardware section send logical 
high to begin yaw rate gyro self-test function and warm up the unit mechanically, repeat 
twice to ensure system mechanically ready 
 
Loop Forever: 
Multitasking Loop One: This loop will execute every two hundred and fifty milliseconds, 
which is set by the delay the beginning of the loop. 
 
-insert two hundred and fifty millisecond delay 
-using write/read function send pointer safAddress, zero, and zero to initialize gyroscope 
functionality and receive data saved to memory location safAddress 
-compute the size of data located at safAddress and store to dataSize 
-convert dataSize using YRGarray and store to dataSize 
-store dataSize to Secure Digital card 
 
End Multitasking Loop One 
End Loop Forever 
 
Below is a flow chart illustrating yaw rate gyroscope pseudo code. 
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Figure 3.3.1. - Illustrates yaw rate gyroscope data pulling, conversion, and storage. 

Yaw rate gyroscope data pulling, conversion, and storage. Yaw rate gyroscope data pulling, conversion, and storage. 
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3.3.2.4. Pseudo Code Notes 
 This device has yet to be installed and tested, so the time delay for multitasking 
was arbitrarily picked to be the same as the accelerometers writing cycle delay of one 
hundred milliseconds. You may have noticed that a port was not declared for the yaw rate 
gyro. We have not yet decided which of the four possible ports to use. 
 

3.3.3. Global Positioning System: 
 The Garmin 18 GPS unit communicates using the National Marine Electronics 
Association's NMEA-0183 standard for marine electronics devices, though other 
standards exist the Rabbit, controller comes with libraries specifically for NMEA-0183. 

 
 The NMEA-0183 protocol works by sending an ASCII string containing six parts. 
The first part is the dollar sign symbol which denotes the beginning of the sentence, 
second is a two character talker ID, third is a three character sentence ID, fourth is 
comma delineated data fields which contain all the relevant sentence data, fifth is a 
asterisk marking the end of the comma delimited section, sixth is a two-digit checksum, 
and seventh is a carriage return and line feed.  
The entire sentence contains no more then eighty-two characters, including the dollar 
sign, carriage return, and line feed. Below is a table of the different talker and sentence 
IDs and what they represent. 
 

Figure 3.3.2. - GPS ID Table 
Talker ID Description Sentence ID Description 

GP 
Global Positioning 
System Receiver GGA GPS Fix Data 

LC Loran-C Receiver GLL 
Geographic Position: 
Longitude and Latitude 

OM 
Omega Navigation 
Receiver RMC 

Recommended Minimum 
Specific GPS/Transit Data 

II 
Integrated 
Instrumentation     

GPS Talker and Sentence IDs 
 
 This eighty-two character max length is helpful when it comes to error checking, 
if a sentence stream surpasses this eighty-two char limit there was an error in processing. 
The system either missed the carriage return or the device is corrupted, the likelihood of a 
corrupted system is rare, so the course of action will be to re-poll a new sentence and 
check for appropriate sentence length. Before the ASCII sentence containing data from 
the GPS is routed to the Rabbit it first must run through an RS232 converter to ensure the 
correct voltage boundaries are set and the data is in the correct format for a Rabbit 
module to receive. To quickly and easily decode the ASCII sentences Dynamic C's 
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GPS.LIB was used. The functions of interest to us within this library are in the next 
section. 
 

3.3.3.1. GPS.LIB Function Descriptions 
int gps_parse_coordinate(char *coord, int *degrees, float *minutes) 
A sub-function of the three below. It converts the coordinates sent to it by *coord into 
degrees and minutes. 
 
int gps_get_position(GPSPosition *newpos, char *sentence) 
GPSPosition *newpos: declares the structure for this execution of gps_get_position() to 
fill char *sentence: incoming data from the GPS unit. This function is able to decode any 
of the three sentence ID types in figure 3.3.2, GPS for its GPS position data. This is done 
by first parsing the sentence ID out of the string and sorting the data to a function based 
on its ID so that it may handle the different formats of the different sentence types. After 
sorting gps_parse_coordinates is used to convert format, then the GPS data is stored into 
the library's GPSPosition structure seen below. On successful execution a zero is 
returned, a negative one denotes parsing error, and negative two denotes an invalid 
sentence. The following is the struct that the data is stored in. 

Typedef struct{ 
int lat_degrees; 
int lon_degrees; 
float lat_minutes; 
float lon_minutes; 
char lat_direction; 
char lon_direction; 
} GPSPosition; 

 
int gps_get_utc(struct tm *newtime, char *sentence) 
 struct tm*newtime: declares the structure where the UTC time data is stored. 
 char *sentence: incoming data from the GPS unit. 
This function decodes sentences with the sentence ID RMC and stores the time data into 
predefined structure for time stamp storage. On successful execution a zero is returned, a 
negative one denotes a parsing error, and a negative two denotes an invalid sentence. 
 
float gps_ground_distance(GPSPosition *a, GPSPosition *b) 
 GPSPosition *a: pointer to point a 
 GPSPosition *b: pointer to point b 
gps_ground_distance computes the ground distance between two points by using pointer 
a, pointer b, and predefined earth radius variable. Once calculation is complete the 
distance is returned to the main function via a return type of float. 
 

The program we write will pull characters from the port that the GPS is connected 
to one character at a time, filling a string called sentence with the data. Once a complete 
sentence is created and verified Gps_get_position decodes the sentence polled from the 
GPS unit into its basic elements of lat_degrees, lon_degrees, lat_minutes, lon_minutes, 
lat_direction, and lon_direction. It then loads those values into defined structure called 
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GPSPosition. Gps_get_utc works exactly like the previous function though instead of 
decoding GPS data, it decodes time from the data pulled from the satellite.  
Gps_ground_distance works by accepting two GPS coordinates and computing the 
distance between them using a spherical model of the earth. 
 

3.3.3.2. GPS Data Translation 
 The data gps_get_position function decodes does not require any data 
manipulation, calling the functions from the GPS.LIB automatically fills a structure, after 
which pulling coordinates is as easy as saying longitude = GPSposition.lon_degrees. This 
pulls the most recent longitude and stores it in a variable we define for output or storage. 
The function gps_get_utc. on the other hand, does require a small amount of 
manipulation to convert its numerical based date into character based. This will be done 
by defining character arrays filled with the days of the week and another with the months 
of the year, we will then use these arrays to cross reference the gps_get_utc return data.  
 

3.3.3.3. Pseudo Code and Flow Chart 
-initialize the use of GPS.LIB 
-define a max sentence size of 100 characters to validate sentence length, as stated above 
a sentence should never run over eighty-two characters, if it does the system must be 
reset because an error was encountered 
-Initialize arrays to store the days of the week to convert numerical data from gps_get_utc 
into a character based date 
-initialize arrays to store the months of the year to convert numerical data from 
gps_get_utc into a character based date  
-initialize a new variable using GPS.LIB's GPSPosition structure called curPos to store 
current positions gps_get_positions pulls from GPS 
-initialize a new variable using GPS.LIB's tm structure called curTime to store current 
time  returned from gps_get_utc call to GPS 
-initialize string variable sentence using max sentence size 
-initialize variable charChecker to analyze individual characters in string sentence to 
check for a carriage return or new line 
-initialize sting curDirecton to store current direction for latitude and longitude 
-initialize noCord to store flag if there was no coordinate fetched yet 
-initialize variable stringPosPointer to point at the location in the sentence array is of 
concern 
-initialize variable curLong to store the current longitude pulled from GPS 
-initialize variable curLat to store the current latitude pulled from GPS 
-initialize array curTimeStamp to store the current time stamp from the GPS 
 
-using RS232.LIB function serCopen() set baud rate to 4800 
-set all variables to zero to prevent possibility of preexisting data at memory locations  
 
Loop Forever: 
Multitasking Loop One: This loop will execute every thirty seconds which is set by the 
delay at the beginning of the loop 
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-insert thirty second delay 
-set noCord to one so that the follow loop continues to execute until a coordinate is 
fetched 
 
Loop as long as noCord remains equal to one 
-assign character fetched with RS232.LIB's serCgetc function that pulls a single character 
from the serial input line to charChecker 
 
IF charChecker is equal to carriage return or newline proceed with coordinate pulling 
 -set value in sentence at stringPosPoint to zero for subsequent coordinate pulling 
 -set stringPosPoint to zero for subsequent coordinate pulling 

IF call of gps_get_position to fill curPos executes without error proceed with 
storing  data 

-store current longitude direction from curPos into curDirection at position 
zero 
-store current latitude direction from curPos into curDirection at position 
one 

  -store current longitude from curPos into curLong 
  -store current latitude from curPos into curLat 
  -set noCord to zero to show coordinate successfully fetched 

IF call of gps_get_utc to fill curTime executes without error proceed with storing 
data 

  -store current time stamp from curTime into curTimeStamp  
-using days of week and months of year array reference arrays convert 
data in  curTimeStamp from numerical to characters 

 -store variables holding current position and current time into Secure Digital card  
ELSE IF charChecker is valid date greater then zero 
 -store data in charChecker in sentence at the location of stringPosPointer 
 -increment stringPosPointer to point at the next location in sentence 
 IF stringPosPointer equals max sentence  

-error has occurred reset stringPosPoint back to zero so can reset data 
pulling 

 
End onCord verification Loop 
End Multitasking Loop One 
End Loop Forever 
Below is a flow chart illustrating GPS pseudo code. 
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GPS Pseudo Code Flow Chart 

Figure 3.3.3. - Illustrates pulling data, error checking, and storing data. 
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3.3.3.4. Pseudo Code Notes 
This device has been installed and tested, the data output has passed a reality 

check so the delay for multitasking was purposefully set to a large interval. This keeps it 
out of the way while we attempt to install and calibrate other sensors that have yet to be 
verified and require more attention and polling. 
 

3.3.4. Camera 
 Our TransChip TC5747 CMOS camera module will interface to the Rabbit 
through an inter-integrated circuit (I2C) serial bus. The camera is very small and 
efficient, as it was developed for use in cell phones. It is also extremely flexible in the 
available protocols for data transfer and control lines. Features that we will take 
advantage of include: 
 

• Small size 
• Low power consumption at 42mW 
• Built in still and video JPEG encoder 
• Flexibility in the control and data lines available 
• Adjustable down sampling and digital zoom 
• Adjustable frame rate 
• Automatic exposure, white balance, and anti-flicker 

  
 We will begin testing the camera with only the I2C two-wire bus. This simple 
protocol will allow us to setup the camera's control registers and download the 
compressed JPEG images to the microcontroller for storage. However, we believe that 
the I2C serial bus may be too slow to support VGA resolution images at greater that one 
frame per second sampling rate, as it is limited to a bit-rate of 400kbps. If we determine 
after testing that the I2C bus is a bottleneck when increasing the frame rate beyond one 
frame per second we will have to implement a parallel bus to allow future expandability 
and higher bandwidths.  
 The I2C bus is a very simple protocol in that it only needs a clock wire (SCL), 
and a data wire (SDA). It requires devices that wish to communicate be arranged in a 
master/slave arrangement. The master will provide the clock and initiate the 
communication while the slave monitors the data line for data prefaced by its seven bit 
address. In this case the Rabbit will act as the master and the camera will be the slave. To 
communicate, the Rabbit will first establish and stabilize the clock on the SCL line of 
400khz. Then it will send out a start bit on the data line followed by the seven bit address 
of the slave device. The next bit sent will determine if the slave is designated to send or 
to receive data. By sending a 1 the master is saying that it will be sending out one byte of 
data for the addressed slave. On the other hand, a 0 means that it is expecting the slave to 
send data back. On our setup the camera module has been designated the seven bit 
address 0x47, it can be designated read or write by appending a zero or a one to the end 
of the address according to the following table of values. 
 

Figure 3.3.4. - Camera Address Modes 
Action Hex Binary 
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Address 0x47 1000111 
Slave will 
receive 0x8E 10001110 

Slave will 
transmit 0x8F 10001111 

Camera Address Modes 
 

 
Master Transmitting 
 The master will begin transmitting with the start bit followed by the address of the 
intended slave. Once the proper slave address is sent followed by the write bit (0), the 
slave sends out an ACK bit to acknowledge receipt of the command. The master is now 
free to send data one byte at a time as long as the slave sends an ACK bit after each 
received byte. When the master has finished sending all data, it will wait for the final 
ACK bit and then issue the stop command. 
 
Slave Transmitting 
 The master will send out the start bit and the slave address followed by a one to 
signify the slave’s permission to send data. The master will then issue the ACK bit and 
the slave will send one byte of data. This pattern will continue until the master fails to 
follow each byte with an ACK bit, this means that the transmission is complete and the 
master will issue the stop command. 
 

3.3.4.1. Power Sequencing: 
 The camera module requires two additional lines for power up sequencing and 
enabling low power modes. These pins, PS1 and PS2, must both be set to 0 during startup 
until the clock stabilizes, then PS2 is set to 1 for full operation. A table showing the 
operational modes is shown below.  
 

 
Figure 3.3.5. - Camera Operational Modes 
Mode PS1 PS2 
Startup 0 0 
Full 
Operation 0 1 

Sleep 1 1 
Power 
Down 1 0 

Camera Operation Modes 

 
A low power bypass mode is enabled by sending the serial low power mode over the data 
lines, and then setting PS1 to 1 and PS2 to 1 (sleep mode). The camera can then be 
woken up over the serial I2C bus. 
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3.3.4.2. I2C.LIB Function Descriptions 

 The dynamic C environment includes a library called I2C.LIB, which contains 
many useful functions for using the I2C bus on the Rabbit microcontroller.  
 
int i2c_init(); 
This function initializes the I2C protocol and defines the default I/O pins. We will be 
using Port D for the I2C clock and data lines. Rabbit pin PD6 will serve as the SCL clock 
line, and pin PD7 will serve as the SDA data line. 
 
int i2c_wSCL_H(); 
This function will manually set the defined SCL clock output pin to high, and wait a 
predefined amount of time for the slave to stretch it if necessary. If the slave stretches the 
clock too long the function returns a -1. 
 
int i2c_start_tx(); 
This function will initiate I2C data transmission by sending a start bit (S) and waiting for 
a set delay to see if the slave is stretching the clock. It returns 0 for a success and a -1 if 
the slave stretched the clock for too long. 
 
int i2c_send_ack(); 
This function sends the ACK bit to acknowledge that data was successfully sent. It 
returns 0 for a success and a -1 if the slave stretched the clock for too long. 
 
int i2c_read_char(char *ch); 
This function will read in eight bits of data from the slave device (camera). It will tolerate 
the slave stretching the clock to allow communication with slower devices. The 
parameter “char *ch” is the character return buffer. The function returns 0 for a success 
and a -1 if the slave stretched the clock for too long. 
 
i2c_check_ack(); 
This function checks to see if the slave sent an ACK bit on the clock pulse. It will return a 
0 for ACK received, 1 for NAK received and -1 if the slave tried to stretch the clock for 
too long. 
 
int i2c_write_char(char d); 
This function is obviously used the write char d to the slave. It will return 0 for a success, 
1 for a NAK, and -1 if the slave tried to stretch the clock for too long. 
 
void i2c_stop_tx(); 
This function issues the stop command (S).  
 
iint i2c_wr_wait(char d); 
This function will try to write char d to the slave until it responds or the predefined value 
“Max i2cRetries” is reached. It returns 0 for a success, and a -1 to indicate a failure after 
too many retry attempts. 
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3.3.4.3. Image Translation 

 The bulk of the work for data formatting and compression is performed by the 
microcontroller on-board the camera module. It will adjust many settings automatically 
such as the white balance, exposure, and anti-flicker. It also allows adjustment of the 
frame rate and down sampling by setting the control registers over the I2C bus. The raw 
images it captures are compressed into JPEG image files and stored on the module's 
memory until they are transferred off over the I2C or parallel data bus. Our only job is to 
download the formatted data from the camera and send it to the DOSonCHIP for storage 
onto the SD card. 
 

3.3.4.4. Pseudo Code and Flow Chart 
-Initialize variables 
-Check user specified settings on the configuration file 
-Store settings and send as I2C commands after power sequencing 
-Start power up sequencing 

-Set PD6 to 0 
-Set PD7 to 0 
-RESET_N to 1 
-Wait for 100 ms 
-Set PD7 to 1 
-Reset N to 0 

-if i2c_init(); 
 -continue 
 -else try again 
-Setup the camera settings registers 
-if i2c_start_tx(); 
 -continue 
 -else try again 
-Send slave address 
 -i2c_wr_wait(0x8E); 
-char d = first letter of camera command 
-i2c_wr_wait(char d); 
-i2c_check_ack(); 
-char d = second letter of camera command 
-i2c_wr_wait(char d); 
-Repeat the entire first setup command is sent to the camera 
-i2c_stop_tx(); 
-Repeat above process to send commands based on user configuration file if present 

-Send command to set camera to VGA capture 
-Send command to set camera to 1 frame per second 
-Send command to set camera to JPEG compression 
 

Loop Forever: 
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Multitasking Loop One: This loop will execute every thirty seconds which is set by the 
delay at the beginning of the loop 
 
-insert one second delay 
-Start pulling JPEG images off of camera 
-i2c_read_char(char *ch); 
-place char *ch in an array to be stored on the Rabbit flash memory 
-check to see if char received is an ancillary character 
 -if not, continue to append incoming data to the array 
 -if the received character is ancillary, break 
-The complete JPEG has been received 
-Get time from RTC 
-Send command to DOSonCHIP to make file named with the time 
-Append to the file with the JPEG data stored in flash 
-Repeat until all data is written 
-Wait until next frame is ready 
-Pull new JPEG image off camera 
-Repeat until terminated 
-Power camera down 
 -Set PD6 to 1 
 -Set PD7 to 0 
 -Disable clock crystal 
 
End Multitasking Loop One 
End Loop Forever 
 
Shown below is a flow chart illustrating camera pseudo code. 
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Figure 3.3.6. -  Illustrates camera initialization, image downloading and storage. 

Camera Pseudo Code Flow Chart 
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3.3.4.5. Pseudo Code Notes 
 This device has not yet been tested as a custom PCB must be milled to hold the 
extremely small, five mil pitch, 24-pin connector. This is only a rough outline of how we 
intend the code to be written for actual testing. 

 
3.3.5. On Board Diagnostic System 

 Data pulled from the vehicle's on board diagnostic (OBD) computer will perform 
two interface changes on its way to the Rabbit module. It first passes through an ELM 
327 which handles converting all of the popular OBD-II interfaces (ISO 15765-4, SAE 
J1850 PWM, SAE J1850 VPW, ISO 9141-2, and 14230-4) data outputs to the ASCII 
character standard. The device is extremely handy in that it auto detects which OBD-II 
interface it is dealing with and handles all the grunt work associated with converting it to 
the RS232 standard. This will allow our device to be installed in a majority of vehicles in 
the world without any hardware or software modifications. Next we will route the signal 
through an MAX3232 converter to make the signal Rabbit friendly. Dynamic C does not 
come bundled with an OBD.LIB file to handle OBD-II/ELM 327 data polling so we will 
be writing it ourselves. The OBD.LIB will handle sending the correct PID codes for data 
we need from the OBD, receiving the OBD’s response, and converting the response into 
the correct format. The PID codes we will be using are listed below. 
 

 
 
 
 

With the OBD.LIB library handling data fetching and conversion, the 
multitasking loop is left to initializing the correct port, setting the port’s baud rate, 
sending any setting changes to the ELM 327, calling the OBD.LIB functions, and 
handling temporary storage for returned values. 
 
 

3.3.5.1. OBD Data Translation 
After OBD-II data has run through the ELM 327 and MAX3232 filters it still 

must be converted one more time because it arrives at the Rabbit as HEX. To convert the 
data, we must pull one character at a time and perform a mathematical operation to arrive 
at the correct HEX value. 
 

Figure 3.3.7. – Outline of the OBD PID codes we will be using to communicate and pull data from the OBD system. 
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3.3.5.2 OBD.LIB: Pseudo Code and Flow Chart 
-define library as OBD.LIB 
-declare getRPM function header 
/*******************************************************************/ 
/*         int getRPM() will send the return engine RPM PID code to the OBD    */ 
/* over the corresponding port, after a short delay loop will then pull                */ 
/* data from the port, perform the required data conversions, and                      */ 
/* return the engine RPM                                                                                     */ 
/*******************************************************************/  
-declare function 'int getRPM()' 
 -initialize string rpmPID to hold the PID code for RPM fetching 
 -initialize int rpmOBD to store the returned RPMs from OBD 
 -set rpmPID to '01 OC\r' ASCII string required to tell the OBD to return RPM 
 -send rpmPID over port B for OBD to process using RS232.LIB serBwrite() 
 -short for loop to give OBD processing time  

-loop four times pulling characters from OBD using RS232.LIB serBgetc() 
converting to Dec and adding to rpmOBD 

-return rpmOBD 
 
-declare getSpeed function header 
/*******************************************************************/ 
/*         int getSpeed() will send the return vehicle speed code to the OBD                */ 
/* over the corresponding port, after a short delay loop will then pull                */ 
/* data from the port, perform the required data conversions, and                      */ 
/* return the vehicle speed                                                                                   */ 
/*******************************************************************/  
-declare function 'int getSpeed()' 
 -initialize string speedPID to hold the PID code for speed fetching 
 -initialize int speedOBD to store the returned speed from OBD 

-set rpmPID to '01 OD\r' ASCII string required to tell the OBD to return vehicle 
speed 

 -send speedPID over port B for OBD to process using RS232.LIB serBwrite() 
 -short For-loop to give OBD processing time  
 -loop two times pulling characters from OBD using RS232.LIB serBgetc() 
converting to Dec    and adding to speedOBD 
-return speedOBD  
 
-declare getThrot function header 
/*******************************************************************/ 
/*         int getThrot() will send the return vehicle throttle position code to                */ 
/* the OBD over the corresponding port, after a short delay loop will                */ 
/* then pull data from the port, perform the required data conversions,              */ 
/* and return the vehicle throttle position                                                             */ 
/*******************************************************************/  
-declare function 'int getThrot()' 
 -initialize string throtPID to hold the PID code for throttle position fetching 
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 -initialize int throtOBD to store the returned throttle position from OBD 
-set throtPID to '01 11\r' ASCII string required to tell the OBD to return vehicle 
throttle position 

 -send throtPID over port B for OBD to process using RS232.LIB serBwrite() 
 -short For-loop to give OBD processing time  

-loop two times pulling characters from OBD using RS232.LIB serBgetc() 
converting to Dec and adding to throtOBD 

-return throtOBD 
 
The three OBD.LIB functions are identical with only a few small exceptions, the type of 
data being pulled from OBD, the PID code, and how many return characters there are, so 
only one generalized flow chart is presented below. 
 

 
 
 
 
 

3.3.5.3. OBD: Pseudo Code and Flow Chart 
-initialize the use of OBD.LIB 
-initialize integer variable vehicleRPM to store the vehicles RPM sent from OBD 
-initialize integer variable vehicleSpeed to store the vehicles speed sent from OBD 
-initialize integer variable vehicleThrot to store the vehicles throttle position sent from 
OBD 
 
-using RS232.LIB function serBopen() set baud rate to 9600 the ELM 327 unmodified 
default 

Figure 3.3.8. - Illustrates the generalized functions of the OBD.LIB 
library for fetching, converting, and returning data. 

OBD-II Function Call Flow Chart 
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-set all variables to zero to prevent possibility of preexisting data at memory locations  
 
Loop Forever: 
Multitasking Loop One: This loop will execute every five hundred milliseconds which is 
set by the delay at the beginning of the loop 
 
 -insert five hundred millisecond delay 
 -call getRPM() assign return value to vehicleRPM 
 -call getSpeed() assign return value to vehicleSpeed 
 -call getThrot() assign return value to vehicleThrot 
 -store vehicleRPM, vehicleSpeed, and vehicleThrot into Secure Digital card 
 
End Multitasking Loop One 
End Loop Forever 
 
Figure below illustrates the OBD pseudo code presented. 
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3.3.5.4. Pseudo Code Notes 
 The simple OBD pseudo code is a resultant of off loading all of the data fetching 
leg work to the OBD library. The extremely user friendly interface of the ELM 327 also 
plays a large roll in that its default settings work perfectly for our set up, negating the 
need for any type interface modification calls. 
 

3.3.6. DOSonCHIP 
In each sensor’s pseudo code section the data storage is termed: “store variables into 
Secure Digital card.” Of course the storing routine is more complicated then this but to 
prevent redundancy, discussion of it was reserved for this section. 

Figure 3.3.9. - Illustrates OBD data acquisition and storage. 

OBD-II Data Acquisition and Storage Flow Chart 



Group 17 • Design Document • Page 68 

Communication between the Rabbit and DOSonCHIP module will be via universal 
asynchronous receiver/transmitter (UART), a type of serial communication. We will be 
using Dynamic C's RS232.LIB to handle serial communication over the appropriate port. 
Before we can begin data transmission for storage the baud rate must first be set by 
sending two sequential carriage returns. The DOSonCHIP unit will receive the first and 
calculate the baud rate, after receiving the second it calculates the baud rate again and 
compares the two. If they match the device preps itself for communication and sends a 
ready prompt to the Rabbit. Once the ready prompt is received the system can proceed 
with sending information polled from the different sensors. The DOSonCHIP commands 
that we will be using to send this data and their description are as follows: 
 

Figure 3.3.10. - DOSonCHIP Commands 
  
  
Command Description Returns 

ow{#1}{A:\TripLogs\Data.TXT} 

Opens the existing file 
Data.TXT within the directory 
A:\TripLogs\, and sets write 
pointer to the end of the file 
for easy appending. 

Which of the four possible 
sessions it is working in (for this 
case one) and any errors 
encountered when attempting to 
execute the command 

w{#1}{string} 

Appends data contained in 
the string to the file opened 
by the ow command for 
session one. 

Datainput identifier along with 
any errors that occurred during 
execution. 

Q{#1} 

Quit and close the file 
session one is currently 
working with. 

Any errors encounter during 
execution 

 
For the first build of our device sensors will have their own corresponding data files on 
the DOSonCHIP. This way each can load data onto the Secure Digital card during its 
multitasking loop. After successfully accomplishing this task we will move on to the 
project requirement of one single file with data logs from every device. We will do this 
by refraining from executing a data upload until every sensor is polled and data is 
available from each sensor. Then one string will be formulated with each sensor’s data to 
be sent over the serial line to the DOSonCHIP. Below is an example of how we plan on 
structuring the data within the Secure Digital card. 
 
Figure 3.3.11. - Secure Digital Data File Layout 
       

Time 
AccelX 
m/s 

AccelY 
m/s Yaw Rate % Speed (MPH) RPM GPS Coordinate 

0.500011574 0.00 0.00 0 0 1200 28.47N & 81.44W 
0.500023148 0.00 0.00 0 0 1225 28.47N & 81.44W 
0.500034722 0.00 0.00 0 0 1200 28.47N & 81.44W 
0.500046296 0.50 0.00 0 1 1225 28.47N & 81.44W 
0.500057870 0.75 0.00 0 2 1250 28.47N & 81.44W 
0.500069444 1.15 0.12 2 3 1250 28.47N & 81.44W 
0.500081019 1.50 0.13 4 4 1275 28.47N & 81.44W 
0.500092593 1.55 0.15 7 5 1300 28.47N & 81.44W 
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0.500104167 1.50 0.17 8 6 1325 28.47N & 81.44W 
0.500115741 1.48 0.19 10 7 1250 28.48N & 81.43W 

 
 
 

3.3.6.1. Pseudo Code and Flow Chart 
-initialize sensorData a string that we will construct with all the different sensor data 
-initialize sensorDataArray to store all sensor data before the array in converted into a 
string 
-initialize errFlagArray array to store any errors encountered 
 
Multitasking Loop One:  
-set two millisecond delay so write function performed every millisecond 
-set sensorDataArray element one to current time 
-set sensorDataArray element two to accelerometer x-axis data 
-set sensorDataArray element three to accelerometer y-axis data 
-set sensorDataArray element four to yaw rate data 
-set sensorDataArray element five to speed from OBD  
-set sensorDataArray element six to RPM from OBD 
-set sensorDataArray element seven to present GPS coordinate 
 
-compress array sensorDataArray into a string with tab characters as delimiters 
 
-set baud rate on available serial port D to 115200 
-use RS232.LIB's serDputc to send the carriage return character twice 
-use RS232.LIB's serDgetc to pull a character from the receiving line of the DOSonCHIP 
and  store to first element of errFlagArray 
 
IF element one of errFlagArray is ready prompt 
 -send open file for writing command of desired file and location 
 -receive response from DOSonCHIP store to errFlagArray element two 
 -send write to file command along with sensorData to be appended at the end of 
the file 
 -receive response from DOSonCHIP store to errFlagArray  element three 
 -send quit/close command 
 -receive response from DOSonCHIP store to errFlagArray element four 
IF error flag received 
 -flash LED to denote error during write cycle 
 -return write failure to application and errFlagArray 
End Multitasking Loop One 
 
Figure below illustrates DOSonCHIP pseudo code presented. 
 



Group 17 • Design Document • Page 70 

 
 
 

Figure 3.3.12. - Illustrates data conversion, DOSonCHIP error checking, and file manipulation. 
 

DOSonCHIP Communications and File Writing Flow Chart 
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3.3.6.2. Pseudo Code Notes 
The pseudo code outlined above will be for the final build’s data file format, 

which is illustrated in the Secure Digital Data file table. The format will be achieved by 
the routine that converts sensor data in an array to a string delimited with tab characters. 
When this is written to a text file within the DOSonCHIP it will create a table like format 
that will be easy to read. During initial device testing all sensors will have their own 
single file. This way if a device is not working as we wished and corrupting its data file, 
it will not propagate into other sensor’s data files. The only difference in the pseudo code 
and flow chart for the testing storage routine and the final storage routine is the exclusion 
of the array compression function. This code will be called by all sensor multitasking 
loops. 
 

3.4. Software Routines 
3.4.1. Boot Sequence 

 When power is applied to the Rabbit it will need to begin a sensor and 
DOSonCHIP test sequence to verify all devices are online and communicating properly 
before the master program begins. All of our data will be stored on our non-volatile 
Secure Digital card so no effort will need to be put into pulling data from battery backed 
ram after cold boot. First to be initialized and tested and will be the DOSonCHIP memory 
system, the most critical external device. After communication protocols like the ones 
outlined in the DOSonCHIP software interface section are completed, the system will 
then conduct an echo ping test. Echo pinging involves setting the device to echo back all 
received data. After data sent is matched with the data received a new log file using a 
generic name matched with the Rabbit’s data and time stamp appended to the end will be 
created in the appropriate directory. Echo mode will then be shut off and initialization 
and testing can move to the next device. If the DOSonCHIP fails the boot tests and 
recovery attempts the system is put in a critical state because no data can be logged, in 
effect making the entire device useless. If this happens the system will signal a red LED 
to be flashed repeatedly and remain idle, indicating a critical error. Next to be initialized 
will be the sensor systems; each will have its communication protocols initialized 
(outlined in each devices software interface section) and be echo pinged to ensure 
operation. If all attempts to remedy a failed sensor boot (outlined in boot sequence 
pseudo code) are unsuccessful an error log will be created on the Secure Digital card 
saving system information and details available on the failed boot, the system will flash a 
yellow LED to indicate an unsuccessful boot sequence, the multitasking loop for the 
failed device will be disabled and the program will begin down a sensor. The entire boot 
sequence will be housed in a multitasking loop set to run once on initialization, it then 
will remain dormant until the system is reset. 
 

3.4.1.1. Pseudo Code and Flow Chart 
/************************Accelerometer******************************/ 
-initialize array ACCarray with “Analog Devices” acceleration reference chart 
/************************End Accelerometer**************************/ 
 



Group 17 • Design Document • Page 72 

/************************Yaw Rate Gyro******************************/ 
-initialize the use of SPI.LIB 
-initialize pointer safAddress pointed at a safe address location to store received data 
-initialize array YRGarray with “Analog Devices” yaw rate gyro reference chart for any 
 conversions necessary 
/************************End Yaw Rate Gyro**************************/ 
 
/************************GPS******************************/ 
-initialize the use of GPS.LIB 
-define a max sentence size of 100 characters to validate sentence length, as stated above 
a sentence should never run over eighty-two characters, if it does the system must be 
reset because an error was encountered. 
-initialize arrays to store the days of the week to convert numerical data from gps_get_utc 
into character based date  
-initialize arrays to store the months of the year to convert numerical data from 
gps_get_utc into character based date  
-initialize a new variable using GPS.LIB's GPSPosition structure called curPos to store 
current positions gps_get_positions pulls from GPS 
-initialize a new variable using GPS.LIB's tm structure called curTime to store current 
time returned from gps_get_utc call to GPS 
-initialize string variable sentence using max sentence size 
-initialize variable charChecker do analyze individual characters in string sentence to 
check for a carriage return or new line 
-initialize sting curDirecton to store current direction for latitude and longitude 
-initialize noCord to store flag if there was no coordinate fetched yet 
-initialize variable stringPosPointer to point at which location in the sentence array is of 
concern 
-initialize variable curLong to store the current longitude pulled from GPS 
-initialize variable curLat to store the current latitude pulled from GPS 
-initialize array curTimeStampe to store the current time stamp from the GPS 
/************************END GPS*************************/ 
 
 
/************************OBD******************************/ 
-initialize the use of OBD.LIB 
/************************END OBD*************************/ 
 
 
/************************Camera******************************/ 
-initialize the use of I2C.LIB 
/************************END Camera*************************/ 
 
 
/************************Universal**********************************/ 
-initialize character bootTestc to store return values from devices to confirm proper 
functioning 



Group 17 • Design Document • Page 73 

-initialize string bootTests to store return values from devices to confirm proper 
functioning 
-initialize integer bootTesti to store return values from devices to confirm proper 
functioning 
-initialize integer breakTest to store flag for repeated attempts to initialize device 
-initialize string saveName to store the name of the current data logging file being used 
-initialize integer deviceOnline to store flag confirming DOSonCHIP working correctly 
-set all initialized variables to zero 
/************************End Universal******************************/ 
 
 
/************************DOSonCHIP Boot Sequence********************/ 
Do while breakTest is less then or equal to four 
-set baud rate on available serial port D 
-use RS232.LIB's serDputc to send the carriage return character twice 
-use RS232.LIB's serDgetc to pull a character from the receiving line of the DOSonCHIP 
and store to bootTestc 
IF bootTestc is equal to ready prompt 
-use RS232.LIB's serDputs('e1') initializing DOSonCHIP echo mode to confirm data sent 
matches data received 

-use RS232.LIB's serDputc('T') sending single character T to DOSonCHIP 
 -use RS232.LIB's serDgetc() storing result to bootTestc 
 IF bootTestc equals 'T' DOSonCHIP confirmed proceed with program 
  -create string containing 'datalogger' appended with the time and date from 
   Rabbit, store in saveName, and create the file on the DOSonCHIP 
  -use RS232.LIB's serDputs('e0') turning off DOSonCHIP echo mode 
  -set deviceOnline to one confirming DOSonCHIP online 
  -set breakTest equal to four breaking out of test/initialization routine 
-increment breakTest by one 
End do while loop 
 
IF deviceOnline equals zero, the DOSonCHIP is not online critical halt 
 -flash red LED 
 -set all multitasking loops not to run 
 -halt program 
Else reset testing variables for next device 
 -set breakTest to zero 
 -set bootTestc to zero 
 -set bootTesti to zero 
 -set bootTests to zero 
 -set deviceOnline to zero 
/************************End DOSonCHIP Boot Sequence***************/ 
 
 
/************************Accelerometer Boot Sequence********************/ 
Do while breakTest is less then or equal to four 
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-initialize quadrature decoder and port F to receive PWM data 
-reset channel one's high counter for Port F using R3000.LIB qd_zero ensuring clean 
slate before polling begins 
 
-set bootTesti equal to quadrature decoded data polled from port F using R3000.LIB 
qd_read 
 
IF bootTesti is less then zero an error in polling has occurred  

-reset channel one's high counter which will reinitialize it back onto a valid 
polling frequency using qd_zero 

 -set bootTesti equal to quadrature decoded data polled from port F using qd_read 
IF bootTesti is equal to zero or one the accelerometer is being polled correctly and is 
inifitalize 
  -set breakTest equal to four breaking out of test/initialization routine  
  -set deviceOnline equal to one indicating sucessful device boot 
 
-increment breakTest by one 
End do while loop 
 
IF deviceOnline equals zero, the Accelerometer is not online 
 -flash yellow LED 
 -set accelerometer multitasking loop not to run 
 -create error report file on DOSonCHIP reporting accelerometer boot failure 
 
/* Reset universal variables for next device*/  
-reset channel one's high counter using qd_zero 
-set breakTest to zero 
-set bootTestc to zero 
-set bootTesti to zero 
-set bootTests to zero 
-set deviceOnline to zero 
/**********************End Accelerometer Boot Sequence********************/ 
 
 
/************************Yaw Rate Gyro Boot Sequence********************/ 
Do while breakTest is less then or equal to four 
-set clocked serial port E to be used for SPI communication 
-set system for SPI master mode 
-using a separate line on the yaw rate gyro discussed in the hardware section send logical 
high  to begin yaw rate gyro self-test function and warm up the unit mechanically, 
repeat  twice to ensure system mechanically ready 
-using write/read function send pointer safAddress, zero, and zero to initialize gyroscope 
 functionality and has received data saved to memory location safAddress 
-compute the size of data located at safAddress and store to bootTesti 
 
IF bootTesti is valid data, Yaw Rate Gyro is initialized 
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 -set breakTest equal to four breaking out of test/initialization routine 
 -set deviceOnline equal to one telling system sucesffuly booted 
 
-increment breakTest by one 
End do while loop 
 
IF deviceOnline equals zero, the Yaw Rate Gyro is not online 
 -flash yellow LED 
 -set yaw rate gyro multitasking loop not to run 
 -create error report file on DOSonCHIP reporting yaw rate gyro boot failure 
 
/* Reset universal variables for next device*/  
-set breakTest to zero 
-set bootTestc to zero 
-set bootTesti to zero 
-set bootTests to zero 
-set deviceOnline to zero 
/************************End Yaw Rate Gyro Boot Sequence***********/ 
 
 
/************************GPS Boot Sequence************************/ 
-using RS232.LIB function serCopen() set baud rate to 4800 
-set noCord to one so that the follow loop continues to execute until a coordinate is 
fetched 
 
Loop as long as noCord remains equal to one 
IF bootTesti is equal greater than or equal to five hundred GPS has failed to obtain lock 
 -set noCord to zero breaking loop without deviceOnline being set 
-assign character fetched with RS232.LIB's serCgetc function that pulls a single character 
from the serial input line to charChecker 
 
IF charChecker is equal to carriage return or newline GPS initalized and functioning 
properly 
 -set value in sentence at stringPosPoint to zero for subsequent coordinate pulling 
 -set stringPosPoint to zero for subsequent coordinate pulling 
 -set deviceOnline equal to one 

IF call of gps_get_utc to fill curTime executes without error proceed with storing 
data 

  -store current time stamp from curTime into curTimeStamp  
-using days of week and months of year array reference arrays convert 
data in  curTimeStamp from numerical to characters 

 -use GPS time to set the Rabbit's internal timer  
 -set noCord to zero to break testing loop 
ELSE IF charChecker is valid date greater then zero 
 -store data in charChecker in sentence at the location of stringPosPointer 
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 -increment stringPosPointer to point at the next location in sentence 
 IF stringPosPointer equals max sentence  
  -error has occurred reset stringPosPoint back to zero so can reset data 
pulling 
-increment bootTesti 
End onCord verification Loop 
 
IF deviceOnline equals zero, the GPS is not online 
 -flash yellow LED 
 -set GPS multitasking loop not to run 
 -create error report file on DOSonCHIP reporting GPS boot failure 
 
/* Reset universal variables for next device*/  
-set breakTest to zero 
-set bootTestc to zero 
-set bootTesti to zero 
-set bootTests to zero 
-set deviceOnline to zero 
/************************End GPS Boot Sequence************************/ 
 
 
/************************OBD Boot Sequence************************/ 
 
Do while breakTest is less than or equal to four 
-using RS232.LIB function serBopen() set baud rate to 9600 the ELM 327 unmodified 
default 
 
 -call getRPM() assign return value to bootTesti 
 IF bootTesti is valid data 
  -set breakTest to one breaking loop 
  -set deviceOnline equal to one showing OBD working properly 
 Else continue boot attempts 
  -increment breakTest 
End do while loop 
 
IF deviceOnline equals zero, the OBD is not online 
 -flash yellow LED 
 -set OBD multitasking loop not to run 
 -create error report file on DOSonCHIP reporting OBD boot failure 
 
/* Reset universal variables for next device*/  
-set breakTest to zero 
-set bootTestc to zero 
-set bootTesti to zero 
-set bootTests to zero 
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-set deviceOnline to zero 
/************************End OBD Boot Sequence************************/ 
 
 
/************************Camera Boot Sequence************************/ 
Do while breakTest is less than or equal to four 
 
-Check user specified settings on the config file 
-Store settings and send as I2C commands after power sequencing 
-Start power up sequencing 

-Set PD6 to 0 
-Set PD7 to 0 
-RESET_N to 1 
-Wait for 100 ms 
-Set PD7 to 1 
-Reset N to 0 

-if i2c_init(); 
 -continue 
 -else try again 
-Setup the camera settings registers 
-if i2c_start_tx(); 
 -continue 
 -else try again 
-Send slave address 
 -i2c_wr_wait(0x8E); 
 
-char d = first letter of camera command 
-i2c_wr_wait(char d); 
-i2c_check_ack(); 
-char d = second letter of camera command 
-i2c_wr_wait(char d); 
-Repeat the entire first setup command is sent to the camera 
-i2c_stop_tx(); 
-Repeat above process to send commands based on user config file if present 

-Send command to set camera to VGA capture 
-Send command to set camera to 1 frame per second 
-Send command to set camera to JPEG compression 

 
-call i2c_read_char(char *ch) to download picture from camera 
-place char *ch in bootTests to temporaly store image data 
-check to see if char received is an ancillary character  
 IF no ancillary characters returned 
  -continue to append incoming data to the array 
  -after completion set deviceOnline to one signaling successful boot  
  -set breakTest equal to four 
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-increment breakTest for another iteration of boot sequence if first failed and corrupted 
data returned 
 
End do while loop 
 
IF deviceOnline equals zero, the camera is not online 
 -flash yellow LED 
 -set camera multitasking loop not to run 
 -create error report file on DOSonCHIP reporting camera boot failure 
 
/* Reset universal variables for next device*/  
-set breakTest to zero 
-set bootTestc to zero 
-set bootTesti to zero 
-set bootTests to zero 
-set deviceOnline to zero 
/************************End Camera Boot Sequence************************/ 
 
-Proceed with main program 
 
Below is a flow chart of the pseudo code: 
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Figure 3.4.1. - Illustrates boot sequencing discussed in pseudo code above. 
 

Boot Sequencing Flow Chart 
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3.4.2. Emergency Mode 
 An optional addition to the project is an emergency mode, an idea touched on in 
the multitasking section. The concept is that if the sensors pick up on a sudden or erratic 
change in driving behavior the timing delays for the different sensors would be reduced. 
This would be accomplished with the addition of emergency flag variables in the 
multitasking loops for the accelerometer, yaw rate gyroscope, and OBD. A sensor’s 
emergency flag would be activated when its return data surpasses a defined threshold. So 
if the accelerometer reads a sudden deceleration, or the yaw rate gyroscope reports an 
erratic jerk, or the OBD shows throttle position at 100%, its associated flag would be 
assigned the value one. Within the emergency mode multitasking loop would be a wait 
for emergency flag statement, so when the emergency flag is given the value one the 
emergency mode multitasking loop would immediately begin execution. Within the 
emergency mode multitasking loop, post wait statement, would be the reassigning of the 
critical sensors loop delays, below which would be another wait for statement with a 
fifteen second delay. For fifteen seconds the system will run at its maximum processing 
power to bring in as much critical data as possible. Allowing for later data examination to 
present a clear picture of what happened to cause an accident or a near miss. After fifteen 
seconds the system would come back into the emergency mode multitasking loop where 
the critical sensor loop delays and emergency flag would be set back to their defaults and 
emergency mode would be put back into standby. 
 

3.4.2.1. Pseudo Code and Flow Chart 
-initialize integer variable emergFlag to store the emergency mode flag 
-initialize integer variable delayAccel to store the multitasking loop delay for the 
 accelerometer 
-initialize integer variable delayYaw to store the multitasking loop delay for the yaw rate 
 gyroscope 
-initialize integer variable delayOBD to store the multitasking loop delay for the OBD 
-initialize integer variable delayDOS to store the multitasking loop delay for the 
DOSonCHIP 
-initialize integer variable delayCam to store the multitasking loop delay for the camera 
 
-set all variables to zero to prevent possibility of preexisting data at memory locations  
 
Loop Forever: 
Multitasking Loop One: This loop will execute immediately after emergFlag is set to one 
 
 -insert wait for command using emergFlag as a parameter  

-set delayAccel to 50 representing a 50ms re-poll delay, twice as fast as the 
default 

 -set delayYaw to 50 representing a 50ms re-poll delay, twice as fast as the default 
-set delayOBD to 250 representing a 250ms re-poll delay, twice as fast as the 
default 

 -set delayDOS to 50 representing a 50ms re-poll delay, twice as fast as the default 
-set delayCam to 500 representing a 500ms re-poll delay, twice as fast as the 
default  
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 -set 15 second delay 
-set delayAccel to 100 representing a 50ms re-poll delay, twice as fast as the 
default 
-set delayYaw to 100 representing a 50ms re-poll delay, twice as fast as the 
default 
-set delayOBD to 500 representing a 250ms re-poll delay, twice as fast as the 
default 
-set delayDos to 100 representing a 250ms re-poll delay, twice as fast as the 
default 

 -set delayCam to 1000 representing a 1s re-poll delay, twice as fast as the default 
 -set emergFlag to zero completing the system transition to normal mode 
 
End Multitasking Loop One 
End Loop Forever 
The figure below illustrates the emergency mode pseudo code. 
 
 
 

 
 Figure 3.4.2. - Illustrates program flow as system 

switches in and out of emergency mode. 

Program Flow Control Including Emergency Mode 
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3.4.3. Shutdown Sequence: 
 Preliminary designs for system shutdown will quite simply be cutting off power to 
the Rabbit and all of our external sensors. The Rabbit 3200 module lacks any built in soft 
shutdown capability so without any manipulation it will be shutdown in the middle of 
code execution with no warning. As of now there are no plans to do anything more then 
let the Rabbit hard shut down. The only concern resultant of a hard shut down is the 
effect on our data file on the Secure Digital card if power is cut amidst a write call. This 
will be heavily tested to ensure that our saved data will not be entirely corrupted. If only 
the last entry is affected we can easily delete it and lose that last tenth of a second of data. 
But if the entire file is lost it would be disastrous in the scope of the project. 
 If testing proves hard shutdowns are too risky a method of soft shutdown will 
have to be found. One possibility would be a battery backup unit for the Rabbit to sustain 
power for a few seconds after initial power is cut. This would allow it time to detect it is 
no longer able to contact any of its external sensors, at which point it would stop its main 
program execution in anticipation of shutdown. Another option would be to have the 
Rabbit take special note of the vehicles RPMs. If they dip below the point where the 
vehicle is likely not moving, the Rabbit could freeze Secure Digital access until RPMs 
rose. This would ensure that if a shut down does occur; it would at least not be in the 
process of writing to the Secure Digital card. 
 

3.4.4. Master System Outline and Flow Chart 
 As stated in section 3.3 the pseudo code presented for each sensor is its initial test 
code. Once operation is individually verified all sensors will be incorporated into a single 
device. The pseudo code manipulations to make this possible will involve moving all 
initializations and testing to the boot sequence outlined in section 3.4.1. This boot 
sequence will handle boot up and verify the different devices are operating at intended. 
Once the boot sequence has completed, program flow will go to polling and storage 
procedures. While the system is polling the different sensors the Rabbit module will be 
monitoring all the multitasking loops, switching processing power to each sensor when it 
is that sensor’s turn to poll. After every sensor has completed a polling cycle and has data 
ready for storage, a master cycle has been completed. Processing will then divert to 
storing the gathered data to the DOSonCHIP, after which the system will start the entire 
process over again. In an attempt to refrain from repeatedly presenting the same code this 
section does not include pseudo code. All pseudo code and been presented in its 
individual sections. What will be presented is a master flow chart illustrating what a 
majority of the software sections have been building up to, the big picture for the entire 
program. 
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4. Communication Protocols 
Almost every peripheral device we chose to use communicates with a different 

protocol, therefore are required to use almost the entire gamut of communications 
protocols in order to gather all of the required data. In addition to the different pin 
configurations and power requirements for each protocol, there is also a vastly different 
command set and structure used to communicate with the devices. The Rabbit 
microcontroller we are using has built in capabilities that help use each protocol, but 
some of these are limited to certain ports on certain output pins to work properly. We 
have carefully chosen our devices to work within the capabilities of the Rabbit to ensure 

Figure 3.4.3. - Illustrates the big picture overview for the entire software suite. 

Master Program Flow Control 
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that we have enough of the correct data ports to use. Shown below is a table describing 
the unique needs of all of the peripheral devices hooked up to our microcontroller. 

 
Figure 4.1.1 All Components Data Lines Specifications 

Component Protocol Type 
Voltage Swing 
(V) 

Voltage Leveling 
Required? 

GPS EIA232 
Serial 
UART 0 - 5 Yes 

DOSonCHIP EIA232 
Serial 
UART 0 - 3.3 No 

 SPI 
Clocked 
Serial 0 - 3.3 No 

Accelerometer PWM Duty Cycle 0 - 5 Yes 

Yaw Rate Gyro SPI 
Clocked 
Serial 0 - 5 Yes 

OBDII 
Interpreter EIA232 

Serial 
UART 0 - 5 Yes 

Camera I2C 
Clocked 
Serial 0 - 2.8 No 

 
8 Bit 
Bus Parallel 0 - 2.8 No 

All Components Data Lines Specs 
 
The components that we have selected each have different communications needs 

that will need to be filled by the microcontroller’s I/O ports. Many of these ports have 
been set aside by the manufacturer as dedicated to certain communications protocols, 
other pins have been left available as general purpose I/O pins. Show below is a diagram 
showing the configuration that we have chosen to meet all of the peripheral devices 
protocols by using the ports on the Rabbit that will work the best. 
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Figure 4.1.2. – Mircocontoller I/O ports to devices interconnections. 

Mircocontoller I/O port to device interconnections. 
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4.1. Serial 
4.1.1. RS232 

The RS232 protocol for serial data communications never became standardized. 
The protocol has evolved to adapt to new technology so much that there are many 
different variants and flavors of RS232 in use today. Because the RS232 protocol’s data 
transmission has never been explicitly defined, ambiguities continue to cause confusion 
and ambiguities. Technically speaking, most references to RS232 actually are speaking of 
EIA232. The positive voltages are not well defined in the standards in order to allow 
flexibility. Some of our devices need 3.3V for a positive to register, and some need 5V. 
Our solution to the voltage level problem is to utilize the MAX3232 voltage-leveling chip 
from Maxim. This inexpensive integrated circuit takes care of converting levels between 
the Tx and Rx pins so that we will never damage a serial port or get garbage data due to a 
voltage level mismatch. We will actually use these leveling chips for other protocols that 
have signal voltages above the 3.3V that the Rabbit microcontroller needs to 
communicate with. The Rabbit does not like voltages on its IO pins higher than 3.3V. 

The most popular protocol for communications with our components is serial 
UART, or universal asynchronous receiver/transmitter. This protocol uses two wires for 
serial communication and requires that both devices be independently set to the same 
baud rate, number of data bits, stop bits, and parity. Our OBDII interpreter and storage 
controller both use two additional lines, CTS and RTS, for hardware flow control. The 
ready to sent (RTS) line is used to get attention when a peripheral device has data to send. 
When the host device is ready to receive the data, it brings the clear to send (CTS) line 
low. This handshaking ensures that data will flow smoothly across the bus. After a 
successful handshake the devices may begin transmitting data at the agreed 
predetermined bit-rate. 

 
Figure 4.1.3. - Serial Components 
Component Baud Rate Hardware Flow Control? 
GPS 9,600 No 
DOSonCHIP Auto Detect Yes 
OBDII Interpreter 38,400 or 9,600 Yes 

Serial Components Transmission Speed 
 

4.2 Clocked Serial 
4.2.1. I2C 

We have several devices that communicate with clocked serial protocols that are a 
bit more complicated than serial UART. The two protocols used are SPI (serial peripheral 
interface bus) and I2C (inter-integrated circuit). These use a clock to synchronize and 
time data transactions. The I2C bus uses only two wires, a SCL clock wire, and a SDA 
data wire in a master/slave arrangement. I2C is also an addressed bus, where each device 
has a unique address. The master provides the clock and initiates the communication 
while the slave monitors the data line for data prefaced by the device’s seven-bit address. 
In this case the Rabbit will act as the master and the camera will be the slave. To 
communicate the Rabbit will first establish and stabilize the clock on the SCL line at 400 
kHz. Then it will send out a start bit on the data line followed by the seven-bit address of 
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the slave device. The next bit sent will determine if the slave is designated to send or to 
receive data. By sending a 1 the master is saying that it will be sending out one byte of 
data for the addressed slave. On the other hand, a 0 means that it is expecting the slave to 
send data back. In our circuit the camera module has been designated the permanent 
seven bit address 0x47, it can be designated read or write by appending a zero or a one to 
the end of the address. All of these data bits are sent on the high clock pulse, which 
allows the camera to temporarily ask for a short pause by holding the SCL clock line 
active low. The Rabbit will wait a short while for the clock to go high, if it is held low for 
too long a timeout error will be reported and no data sent. The I2C protocol is simple and 
only requires two data wires be run to the device, but it is limited to 400 kbps, which 
limits its usefulness to us when a higher bandwidth is needed to increase the frame rate 
above 1 frame per send at VGA, or 3 frames per second at QVGA.  

 
4.2.2. SPI 

The SPI protocol is used by our yaw rate gyro and is an optional protocol for the 
DOSonCHIP storage controller. In order to save one clocked serial port on our 
microcontroller we will be using serial UART to communicate with the DOSonCHIP. 
SPI differs from I2C in that SPI allows full duplex communications due to its one extra 
data line. To ability send and received data simultaneously is at the expense of one extra 
required wire, but allows for much faster serial data transfer. The yaw rate will provide 
the SCLK clock signal that will control the rate at which bits will be sent over the two 
data lines. We will need to determine by testing the device if a fourth wire is required for 
a CS chip select to initiate data transfer, it may not be needed as it will by the only device 
on the bus. Communications begin by checking the value of the DIN data in pin on the 
first falling edge of SCLK. If it is a logic 1 the gyro will be put in a state to accept new 
values for its control registers. These values are clocked in on the rising edge of SCLK 
over the next 12 clocks. At the same time, yaw rate data is being clocked out on the 
falling edge of SLCK on the DOUT data out pin for the next 16 clock pulses. If the value 
at DIN had been a logic 0 the control registers would have remained unchanged and the 
yaw rate information clocked out just the same. 

 
4.3. PWM 

Pulse width modulation (PWM) is only used by our dual-axis accelerometer. It is 
a very simple protocol that alters the duty cycle of the signal to communicate its 
information. It allows for only one-way communication to take place. The data can be 
extracted from the duty cycle by computing how much higher or lower than a fifty 
percent duty cycle is present. If a duty cycle is at sixty percent there is a ten percent 
change in the positive axis. We can then obtain acceleration with the formula 1g = 30% 
change. So a ten percent change would indicate a acceleration of 1/3 g in the positive axis 
direction. We will use the built in pulse width detection capabilities of the Rabbit 
microcontroller to measure the two PWM signals from the accelerometer X and Y axes. 
Below is an example of data sent using PWM. Pay attention to the duty cycles as that is 
the useful data, a higher duty cycle means a longer pulse. The example data given is 
normal to the force of earth’s gravity. The vertical axis would yield a duty cycle equal to 
1g, obviously. 
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Figure 4.1.4. – Comparison timing charts showing Pulse Width Modulated signals.  
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5. Device Design Considerations 
When designing any device there are many different considerations that are not 

explicitly set out in the guidelines that you figure out along the way. Many times you 
don’t figure these out until after the final circuit is built and you realize you forgot 
something as silly as a status indicator to signify the device is working. Since Dr. Papelis 
did not specify much more than the basic functionality, we had to think ahead to make 
sure the device would be well designed enough to be usable by people other than the 
soon-to-be engineers that built it. Usually that starts with a user interface. 

 
5.1. User Interface 

The user interface is one of the most important aspects of the hardware, as 
eventually the device will have a user. The user will need to know critical information 
about the status of the device. The user will also need to be reminded if and when 
something is not set up properly. We will start from the simplest problems and get into 
progressively more complex problems while maintaining the same level of simplicity 
with the user interface.  

The most common and likely user interface is a series of light emitting diodes 
(LEDs) that are labeled and flash at different rates to indicated different statuses. Since 
we are working from most simple to more complex we start with a simple power 
indicator. Once the device is connected to the OBDII bus, which is where the unit pulls 
power from, it will indicate it whether or not it has power by illuminating the power 
LED. If the car’s ignition is switched to off, the device should not have power. If for 
some reason the device does have power but the car’s ignition is off the device will 
indicate it is in a low-power mode by blinking quickly every four seconds. If the device 
has power and the car is running the device will show a solid power light. 

Once the device has power it can begin to power up its subsystems, of primary 
importance is the data storage device and the data storage media. First the device will 
check to make sure the storage card is present and able to be written to. If the storage 
card is not present the storage media LED will flash rapidly, about 4 times per second. If 
the storage media is inserted but not writable, the storage media indicator LED will flash 
rapidly, about 6 times per second. If for some reason the card is present but is full, or will 
shortly be full (less than 50MB available), the storage media LED will flash at about 2 
times per second. This test is not just run once at start-up, the device will continue to 
make sure the media is not full throughout operation and indicate low storage capacity 
when the situation arises. This way the user can glance at the system to make sure 
everything is working properly and be confident it will continue to work for a while after 
the user checks the status. 

After the device has power and is able to write to the storage media, it will try and 
acquire a GPS lock, first the GPS unit must be connected. If the GPS unit is not 
connected the GPS status LED will flash rapidly, about three times per second. If the 
GPS unit is connected but is still waiting to acquire a GPS lock, the LED will flash 
slowly, about once per second. When the device acquires a GPS lock from one or more 
satellites the GPS indicator light will remain solid. 

Next is to make sure the OBDII is communicating properly. We do not really 
need to make sure the cable is connected, without it being connected, the device will not 
power at all. We do need to make sure the device can find the correct OBDII protocol and 
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retrieve data. Once the ELM chip has determined the proper communication method and 
begins polling for RPM and throttle position data the light will remain solid. If for some 
reason the data is unavailable or is invalid, the OBDII LED indicator will flash with 
different codes, four short bursts followed by a pause if the RPM is not being properly 
read, and two short bursts if the throttle position cannot be read. If neither the RPM nor 
the throttle position data is readable, the OBDII LED indicator will flash constantly about 
four times per second to indicate a problem. 

The camera is the next device on the priority list and is next on the list for our 
startup-tests. If the camera is not connected the camera indicator LED will flash about 
twice per second for about 10 seconds, after ten seconds the device will assume you have 
no intention of connecting the camera, the light will blink quickly once every four 
seconds. The camera sub-routine is now, and for the entire time the device is on, until it is 
reset, disabled. No images will be captured or stored. The log file will indicate the camera 
was not connected. The mode allows the processor to forgo the clock cycles necessary to 
store image data and prevents the card from filling up with blank image files. If you want 
to use the camera you must plug it in and reboot the device. Once you have plugged in 
the camera to the device and powered the device by starting the car’s engine, the device 
will check communication with the camera, if all goes well, the camera indicator LED 
will glow solid. If there is a communication problem with the camera the LED indicator 
will flash rapidly six times per second. The device will keep testing the communication 
with the camera until it is either successful or 10 seconds has passed, at which time the 
device will act like the camera is not connected and ignore it. 

If there are any devices plugged into the other expansion ports software must be 
written to support the future device. In addition to adding the data retrieval and storage 
code, there must also be some user interface code written to support the expansion port 
LED indicator. This way the new device may also enjoy the same error checking and 
status indicators the rest of the devices have. 

When all currently implemented systems are operational and functioning properly 
all indicator lights should be lit and solid. If the expansion port is not in use the LED 
indicator should not be light, this merely means that it is not in use, which is correct. If 
correctly programmed, when the expansion port is in use the LED indicator should be lit 
and solid. 

 
5.2. User Configuration 

In addition to the user needing to know what is going on with the device, the user 
should be able to configure the device based on the individual logging requirements. 
Some devices may need to poll images more or less than others; some may want more 
accurate accelerometer readings. Since the accelerometer readings are an average over 
the polling frequency, as the frequency increases the accuracy also increases. However all 
these polling frequencies need to have the ability to be configured easily. Configuration is 
a significant factor in device design, it must be simple and easy, and fault tolerant. 

Our device configuration is to be done with a text file located on the storage 
media. We think this would be the easiest way to configure the device, as a text file can 
be easily edited on just about any personal computer. The text file is also easily read by 
our device and does not require there to be any hardware changes, jumpers or dipswitches 
to be set. The text file also offers the needed fault tolerance. Fault tolerance is much like 
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the error checking done with the user interface. After all the device checks are done, we 
need to make sure the device has a configuration file loaded and that it is readable and 
not corrupted. If for some reason the configuration file is missing or damaged, the default 
configuration can be loaded from the firmware stored on the device. The backup 
configuration file can be also be changed by flashing the microcontroller, which is a more 
technical process, but doable. Once the new file is restored or the version on the card is 
loaded successfully the device can load its polling frequencies and begin to log data. 

 
5.3. Physical Size 

While we are talking about physical size, lets outline the physical layout of the 
device. The device has three main components: the central processing unit, the camera, 
and the GPS device. The central processing unit (CPU) houses all of the main circuitry, 
including the microcontroller, the storage media, user interface, OBDII decoder, 
accelerometers, and yaw rate sensor. This device should be located near the OBDII port, 
which should be no more than thirty-six inches from the steering wheel. The CPU should 
be placed on the floor for a flat, level surface with a low center of gravity to avoid 
exaggerated motions from the suspension. This device we expect to be no larger than two 
inches by five inches by ten inches, which is a conservative estimate. This device will 
have to have enough surface area for the various plugs for the additional components and 
user interface LED lights. 

 
 

Figure 5.3.1. – Cartoon illustrating wiring 
necessary and usage. Yes, we see the 
spelling error. 
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Connected to the CPU is the camera module and GPS device. The GPS device 
should be either a round or square “puck,” which has a magnetic base and waterproof 
housing, which is to be mounted on the roof. The GPS device should be about half an 
inch thick and 3 inches in diameter or 2 inches square. This device contains the GPS 
antenna, which is why it must have a clear view of the sky. Due to the device’s small 
size, which forces the antenna to also be small, the GPS device must also have a large 
ground plane to help focus the signal. The need for a ground plane and clear view of the 
sky make the roof an ideal place to mount the GPS device. 

The camera module we expect to be no larger than a pack of gum and use a 
Velcro strap as a mounting to either the passenger seat headrest or the rear-view mirror. 
Wherever is most convenient of a mounting place that has a good view of the road and 
even the driver if possible, but does not impede or distract the driver, is a where the 
camera should be mounted. 

 
5.4. Logical Size 

Logical size refers to the size of the logical device, the storage media. The device 
uses a commonly available memory storage media called Secure Digital, abbreviated as 
SD card. Secure Digital media cards can be found in sizes from about 64MB all the way 
up to 4GB. When deciding on our removable storage the logical size of the removable 
storage was certainly of extreme importance. The storage media interface chip, called the 
DOSonCHIP is reported to address cards larger than the largest currently available size. 
Although when we asked the company to speak on this topic we received a conflicting 
answer. Regardless of whether or not the company knows what they are talking about we 
see no reason the card will not be able to address at least 2GB which is adequate for our 
use. When deciding on a removable media storage card size we mainly focused on the 
number of pictures we will need to capture, as text logging takes significantly less space 
than images. 

The table below shows the average file size at each resolution. Sample images 
were taken in different conditions with different content to try and represent the varying 
compression ratios in JPEG images. JPEG, which stands for Joint Photographic Experts 
Group, is a standard method of image compression commonly used today. We will be 
using JPEG compression with our logged images. 

 
image file size chart   
 vga qvga 160x120 
sample 1 45.2 KB 14.3 KB 7.8 KB 
sample 2 37.1 KB 12.3 KB 5.4 KB 
sample 3 18.6 KB 6.9 KB 7.1 KB 
sample 4 28.3 KB 10.3 KB 6.8 KB 
avg file size 32.3 KB 11.0 KB 6.8 KB 
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 Approx Number of Images/Capacity (MB) 
 

Approx File 
Size (KB) 128 512 1024 2048 4096 

VGA 32.3 4057.96 16231.83 32463.65 64927.31 129854.61 
QVGA 10.9525 11967.31 47869.25 95738.51 191477.01 382954.03 
160x120 6.77 19360.71 77442.84 154885.67 309771.34 619542.69 
  Hours of Image Capture @ 1Hz 
 VGA 1.13 4.51 9.02 18.04 36.07 
 QVGA 3.32 13.30 26.59 53.19 106.38 
 160x120 5.38 21.51 43.02 86.05 172.10 

Chart showing number of images that will fit on different sized media cards. 
 
Based on the chart above, you can select your media card size based on how long 

you want the device to last before you have to remove, backup, and erase the media card. 
We expect the device to be most useful if it does not have to be constantly maintained, 
which means the longer it can last, the better. We also expect the usual capture size will 
be QVGA, or 320x240 pixels. Based on this assumption and a moderately priced SD 
card, the 2GB card, our device will last for about 50 hours. Please remember, this chart is 
only an estimate, based on image complexity the numbers can vary drastically. The chart 
also does not account for any file format overhead such as minimum block size or FAT 
table overhead. The chart only estimates images and does not include the text data which 
is small in comparison but critically important to the purpose of the device. 

 
5.5. External Antenna Expandability 

The idea of moving the GPS engine to the CPU box and just having an antenna 
port on the CPU box with an inexpensive patch antenna running to the roof has been 
discussed before. Really it depends on how the device is to be used and how likely the 
components are to be lost. Replacing a $10 antenna is much less expensive than replacing 
a $90 GPS unit quite obviously. If the GPS engine were moved to the CPU box, all of the 
expensive parts would be locked inside the car. I would not expect there to be a problem 
theft of vandalism, but it is a point that should be raised, as the design change is rather 
simple, but much easier to do before production than after. 

 
5.6. Future Expandability 

We have tried to make sure the final device design is somewhat future-proofed. 
Larger storage cards should work when they become available, there is an extra 
expansion port for additional devices, IO pins on the microcontroller left open for future 
use and a spare status LED to be used by the additional device. In trying to think ahead of 
how we might expand the design, we have found there are features we would like to 
incorporate in to this version but feel there is simply no time. We would prefer to meet 
the requirements and the deadline with a working version rather than have a spectacular 
improvement on the requirements but run the risk of it not being finished. Therefore, we 
have decided to catalog our design improvement ideas in case the device is finished early, 
or someone decides to build upon the device after it proves its utility. 

We have so far limited the configurability of the device to a text file stored on the 
storage media. In future we expect to have data polling rates be dynamic based on 
environment variables such as speed or acceleration. The idea is to prevent 90 images of 
the car in front at a stoplight. If the car has stopped moving, the camera can capture 
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images once every 30 seconds, or just wait until the car starts moving again. Also if the 
car begins rapid negative acceleration, as would occur in an emergency stop, the image 
capture rate could increase to catch the entire experience and driver reaction. The OBDII 
and accelerometer polling could also increase to show the driver’s reaction to try and 
determine what evasive maneuvers or behaviors that attributed to the emergency 
situation. 

Both of these ideas may require a bit more processing power from the 
microcontroller. Since we have not yet completed the project, we do not know how 
efficient the Dynamic C will be when it gets converted to machine language. We may be 
able to implement a much more simple method of controlling capture rates to extend the 
longevity of the device by adding a control switch to the camera module. This module 
should be within the car operator’s immediate reach and could be adjusted just as easily 
as the mirrors or stereo. 

After we begin initial tests we will also be able to determine the necessity of 
images at night. We expect to find night images particularly challenging for our image 
capture device and would not be surprised of the images turn out too blurry or 
underexposed to be useful. We can use information provided by the GPS system to 
anticipate loss of daylight and shut down the image capture accordingly. 

Better data acquisition is always an important facet of this device, but equally as 
important is collecting the data. Since the device does not necessarily work for a 
prescribed period of time, and each device will have a different run-time based on usage, 
backing up and clearing the contents of memory for each device will become a task all by 
itself. For this portion of the device support we also have some ideas to make the process 
more streamlined. An auto-run script could be included on the storage media, which will 
execute when it is inserted into Windows based PC. The script could automatically zip 
the data contents, naming them appropriately, and readying them for upload. The newly 
created zip file backup up to the users computer and the contents of the media card 
cleared. The script could then open an ftp session to a central server and upload the data. 
Obviously if the user is uploading 2GB of information, this process would take a long 
time, a progress meter would accompany the upload, meanwhile the card could be placed 
back into the logging device. Ideally the text portion would be uploaded before the 
images, as the upload time would be much less, and the text data is more important per 
byte than the images. 

 
5.6.1. Expansion Port Protocol 

Without knowing the device to be used in the future expansion port, we are going 
to make it a standard serial port and have a built in level converter to protect our circuit. 
This will make communication fairly standardized, so if the new device is RS232 it 
should work without modification, if it is a serial UART device, all it will need is a 
simple level shifter to attain proper voltage swing. Leaving this as a standardized port 
will make is as versatile as possible for future use while still leaving it directly connected 
to the microcontroller. 

 
5.7. Software Update Loading Port 

In addition to all of the many interface ports that will be in use by the sensors, we 
will also need to make sure one is reserved to upgrade the software. This port must not be 
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in use, and should have the ability to load software to the microcontroller, as we do not 
want to make updating the software a difficult task that involves hardware changes, or 
setting jumpers. Software can be loaded using a standard RS232 (serial) port from a PC 
using the Rabbit’s Dynamic C software environment. 

 
5.8. Diagnostics Port 

We would like for the software update port to double as a diagnostic port, using 
usually unconnected pins to just output straight serial data that give information about 
what the microcontroller is doing. This port may require jumpers to activate in hardware 
and software so additional clock cycles are not wasted when diagnostics are not 
necessary. 

 
5.9. Mounting Location 

As previously discussed, each module will need to be mounted in a specific place 
for optimal effectiveness. Mounting location was a consideration in the design of the 
device and led us to the three-module design of the system. 

 
5.9.1. Ease and Speed of Installation 

The device must not be complicated to install or use, that is a primary goal. If the 
device is too much work or too complicated, it will not get used, just the same as any 
other device on the market. We have tried to make the device as simple as possible while 
still accomplishing its rather complex set of tasks. The device’s function does require a 
certain level of complexity. The device has to be connected to the OBDII port. That port 
is always near the steering wheel. The device has to have a clear, unobstructed, view of 
the sky, which is usually found on the roof of the vehicle. The device must be able to 
look out the front windshield to capture images, which would put the camera in a 
passenger position. Finally, the device needs to be isolated from excessive false inputs to 
the accelerometers caused by the suspension. The best place to isolate the device is at the 
lowest point possible, the vehicle’s floor. All of these different requirements do not leave 
any room for compromise. However, there are some components without restrictions. 
The microcontroller and accompanying circuitry does not require a specific mounting 
place, the OBDII circuitry does not require a certain mounting place, and the SD card 
module does not require any certain mounting place. The SD module does need to be 
accessible to the user and easily accessed. Based on these requirements we decided that 
as much of the device as possible would go into the floor module. Since that includes the 
microcontroller, we named this the CPU module. That only leaves the components that 
are required to be somewhere else left to add. We have decided to extract power from the 
OBDII port to avoid excessive number of cables running through the vehicle. The rest of 
the devices are also detachable from the device to ease setup and installation. The 
modularity of this design also allows the user to leave components disconnected if they 
do not wish to use them. 

 
5.9.2. OBDII Accessibility 

As previously mentioned, there are certain restrictions imposed upon the OBDII 
standard. One of which is where the interface port is located. Although there are no strict 
definitions as to where specifically it has to be mounted, only that it must be within 
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thirty-six inches of the steering wheel. Assuming manufacturers adhere to this standard, 
the user should have few complications finding the vehicle’s OBDII interface or 
accessing it from within the vehicle. 

 
5.9.3. Wire Routing 

As discussed we tried to keep the number of wires to a minimum to ease the 
installation procedure. In addition to making the device easier to install we also need to 
keep the vehicle free of obstacles and tangles. For this reason we have also designed a 
proper cable routing method to keep the wires out of the passenger and driver’s view and 
travel path. 

 
 

 
 

 
As shown in the above image, the OBDII connector will be located somewhere 

close to the steering wheel. When routing the cable make sure that the cable is secured 
under the dash to avoid stepping on it when trying to apply the brake or accelerator. Then 
run the cable along the floor adjacent to the seat while being sure not to interfere with the 
seat track. 

The main CPU device should rest on the floor in the back seat to avoid accidental 
abuse and facilitate easy wire routing for the remainder of the devices. In addition, since 
the CPU module contains all of the accelerometers and the yaw rate sensor, it should be 
at the lowest part of the car possible to avoid exaggerate input from the suspension. If 
there are going to be passengers in your car, the passengers should take care not to 
disturb the device as and kicking, stomping, or poking, will be logged on the sensors. As 
we can see from the next diagram, the camera module can be placed on the headrest of 

* Photo: stmongomery 

Figure 5.9.1. – Car interior showing OBDII port location. 
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the passenger seat, provided no one is sitting there, or alternately on the rear-view mirror 
as long as the driver’s view remains unobstructed. Finally, the GPS module can be run to 
the roof, the wire can travel up the B-pillar of the vehicle and be closed in the door. The 
B-pillar of the car is the part of the car the driver’s side door is latched to. Not to be 
confused with the A-pillar where the door is hinged. In the diagram the devices with wire 
a different color from the device (also underlined) signifies they are optional components, 
the only component that is not optional is the OBDII connector, as it supplies the power 
for the entire device and the components. 

 

 
 

5.9.4. Low Center of Gravity 
The importance of clean data has been discussed before, even in relation to data 

exaggerated by the suspension, but we will now take a closer look as to why this is 
important. When a car goes through a turn the suspension expands and compresses to 
absorb the forces exerted on the car in an attempt to make the ride more comfortable. In 
some cars, the ride is softer than others. Usually a softer ride is associated with more 
body roll. The following picture examples significant amounts of body roll. 

 

 

* Illustration used and edited with license 
 

* Photo: VWVortex 
 

 

Figure 5.9.2.  
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In the picture above the driver side of the car’s suspension is fully compressing 

while the passenger side suspension is fully extending. The body roll on the car is so 
extreme that the car’s tire is actually coming off 
of the road. In the picture to the right the car’s 
suspension is much stiffer, which means there is 
much less body roll during cornering. The 
accelerometers and yaw rate sensors will record 
the movements and forces caused by cornering. 
In order to maximize the validity of our data we 
need to minimize false inputs exaggerated or 
minimized by the different suspensions of 
various cars.  The best way to accomplish this 
task is to put the sensors as close to the plane of the suspension as possible. The 
following diagram illustrates how the movement readings will be affected based on the 
location of the sensors. The blue line represents the plane that contains the suspension 
components at each wheel. The black line is perpendicular to that, and the red line is 
perpendicular to the road. The farther away from the blue line you get, the more extreme 
the movement is based on the saw suspension compression and expansion. As you can 
see, having the device lower in the car will render more reliable results with fewer false 
inputs. 

 

 
 

 
 
 
 

* Photo: Tinou Bao 

Figure 5.9.4. – Car showing lmited body roll. 

Figure 5.9.5. – Cartoon illustrating how the placement of the accelerometers could potentially affect the 
acceleration readings due to the vehicle’s suspension. 
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5.9.5. Level Surface 
A level surface is also important to the installation. Some devices can be 

haphazardly installed in any orientation, however, due to the positioning of the 
accelerometers on the circuit board, the CPU module must be mounted based on the 
following guidelines. Currently the device has accelerometers for only two axes, the 
project guidelines require recording longitudinal and lateral accelerations, if the 
accelerometers are not aligned properly, they will not get accurate or complete data. For 
example, if the device is mounted vertically, perpendicular to how it was designed, it 
would have one axis in the direction of gravity rather than in the direction of longitudinal 
or lateral acceleration. There is no way to extract this missing data if the device is 
mounted in this manner. If the device is rotated horizontally, rather than facing straight 
forward as it was designed to be, a braking force will be recorded in both axes, rather 
than just longitudinal. Software can be used to interpret the data, but will add complexity 
and introduces the possibility of errors. 

 

 
 

 
In future we may find we will have to add a third axis in order to calculate the 

starting position of the device and compensate for inaccurate readings due to a non-level 
mounting. Consistently level mountings will ensure the recorded readings have relevancy 
to the collected data from other units. 

 
 

Figure 5.9.6. – Cartoon illustrating different mounting orientations and how the 
different positions will affect the accelerometers.   
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5.9.6. Camera Field of View 
Ideally we would like to know what is going on in all directions around the car, 

and also be able to interpret this data by machine rather than needing a human to examine 
the images to extract information. Unfortunately, computers cannot yet recognize data in 
images accurately enough, and the cost of cameras in all directions would be too high. 
Even if the cameras were less expensive we would need a much more powerful 
microprocessor and much larger storage device to accomplish this task. The next best 
alternative to the ideal situation is to have the camera with a large field of view mounting 
in the proper place. As we recall from the discussion in section 2.5.4. a larger field of 
view will allow us to capture more of the scene than a smaller field of view. Since the 
purpose of the device is to log data, the more data the better. A larger field of view means 
more data. Once we have the field of view set appropriately, which is controlled by the 
lens’ focal length, we need to position the camera. The optional requirement for project 
was to capture forward-looking video. In addition we feel it is also important to capture 
the profile shot of the driver in order to log the conditions present in the passenger 
compartment of the vehicle. For this we expect to need the camera on the headrest of the 
passenger seat pointed at a slight angle towards the driver. 

 
5.9.7. Device Accessibility 

Although we need the device to be somewhat insulated from human interaction, 
to avoid bumping and moving the device, we also need it to be easily accessible to the 
user. The user will need to periodically check the user interface to make sure there are no 
errors, as well as remove the data storage media in order to backup the data, erase the 
media card and reinstall the media card in the device. The device must also be easy to 
remove in case the user wants to have passengers that may interfere with or step on the 
device.  

 
5.9.8. Mounting Method 

The mounting method has so far been one of the least thought about facets of the 
device’s design; we originally thought it would be easily figured out “later.” However, 
the more thought we give this enigma, the more daunting the task becomes. We must 
account for all sorts of different mounting surfaces, with any amount of dirt, grime, and 
debris. We expect to be mounting the device on the floor of different cars; each floor 
could offer us a new surface to mount on, carpet, metal, rubber and possibly more. 
Adhesives are most likely out of the question because of their degree of permanence an 
inability to be reused. We cannot use any sort of permanent mounting like a metal 
bracket, even though the device needs to be held securely, as it would damage the 
vehicle. We felt the most likely option to yield acceptable results would be fabric or 
plastic hook and loop fasteners. We would need the hook side of this duo to attach to the 
fabric loops commonly found in the car interior upholsteries. We expect the plastic 
version to be more durable and also offer a stronger, more secure bond. Unfortunately we 
do not expect regular hook and loop fasteners to provide adequate security in more plush 
carpeting. For the plush carpets that are a cut pile rather than the loop style fabric, we 
need a series of spike that will rest amongst the pile and prevent movement, while not 
damaging the upholstery. We feel if we can find plastic hook fasteners that are long 
enough it will suit both styles of carpeting. For rubber and vinyl floor-mats we are still 
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unsure of the best way to affix the device to prevent movement, but will wait to see if we 
need to worry about this possibility considering how few cars have a flooring that is not a 
type of carpet. For the very rare bare metal floors we can use small rare earth magnets, 
which are extremely strong, to secure our device. 
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6. About Us 
6.1. Facilities and Equipment 

The first stage of this project will be completed in the personal homes of the 
group members. Our own personal computers will be used for all coding and most of our 
own tools will be used to create prototypes. Dr Papelis provided some developments kits. 
Initial testing of the device will be performed in our own vehicles (2000 Nissan Xterra, 
2005 Mitsubishi Lancer). Once initial testing is completed circuit board fabrication will 
be outsourced to “PCBExpress.” Final assembly will be conducted in our own homes and 
then final test will be conducted in our sponsor’s vehicle of choice. 

 
6.2 Summary and Conclusions 

Our project is progressing according to schedule. We do not envision any 
problems that will keep us from completing it on time. 

 
6.3. Project Personnel 

 
Kyle Fiducia 

Kyle has been working in technology field since 1999 when he worked as a 
network administrator. Since then he has launched three successful personally owned 
businesses. He has also done consulting work to launch two other businesses. All 
businesses are still running successfully. Kyle also has an interest in hardware devices 
and hopes to further his knowledge in hardware development. Kyle will be graduating 
from the University of Central Florida with a bachelor’s degree in electrical engineering 
in May 2007. After which he plans on attending graduate school at the University of 
Central Florida. 
 
Joshua Mahaz 
Joshua has been involved in web based software development since 2004, specializing in 
PHP, MySQL, and AJAX. He also owns and has lightly developed software for Basic 
Stamp Microcontrollers, through this project he hopes to gain a much firmer footing in 
developing software for microcontrollers as well as touch on developing and integrating 
hardware devices for them. 
After Joshua graduates in August 2007 with a bachelor's degree in computer engineering, 
he will be enrolling in graduate school where he plans on furthering his studies in 
software engineering and microcontroller devices.  
 
Graham Smith 
Graham Smith’s main focus in this project is the power supply and backup systems 
because he has experience with power electronics and Li-Ion cells. He also has 
experience with circuit layout and soldering components. Graham will graduate from 
UCF in May 2007 with a BSEE, and then continue on to graduate school to pursue a 
masters in electrical engineering. 
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