Vehicle Data Logging Device

Group 17 Sponsored by Dr Yiannis Papelis

Kyle Fiducia (EE) Joshua Mahaz (CpE) Graham Smith (EE)

April 20 2007

Abstract

- Sponsored by Dr. Papelis (UCF CECS)
- Build a compact hardware device that logs data acquired by various sensors on a passenger vehicle
- Vehicle data to be logged includes: geographic location, engine RPM, throttle position, acceleration, speed, yaw rate, and forward looking video
- Device must have an easy way to retrieve the data
- Must allow for widespread data gathering usage
- Device must be portable and easy to install

Motivation

Dr. Papelis' Motivation:

- 45,000 automobile accident deaths each year, of which 90% involve driver error.
- To provide real world data for input into his research.
- Extensive amounts of logged data to study driver behavior and develop metrics for driver performance.

Group 17's Motivation:

- Solid-state device with current standard components
 - Working with standard hardware will be much more versatile than learning a highly specialized task to complete a project.
- It is also encouraging that if the design is good enough, the device could be actually used after the project is done, rather than just a proof of concept.
- Sponsored meaning little money out of pocket.

Vehicle Data Logging Device

Data Requirements:

- Geographic position
- Velocity
- Throttle-position
- Engine RPM
- Lateral & longitudinal acceleration
- Forward looking video images (cost dependent)
- Yaw rate (optional)
- Following distance (optional)

Administrative Requirements:

- Allow for easy data retrieval
- User Interface
- Small, portable, easy to install device
- Maintain system cost reproduction below ~\$400
- Intelligent Power Supply
 - Draws power only when the engine is running

Project Specifications

	Capture Frequencies		
Data	Minimum	Optimal	
OBDII - Speed, RPM, Throttle Position	1 Hz	3 Hz	
Lateral & Longitudinal Acceleration	>10 Hz	10 Hz	
GPS Position, Speed, Time	1 Hz	1 Hz	
Forward Looking Video Images	>1 Hz	2 Hz	
Yaw Rate	>5 Hz	10 Hz	
Following Distance	>1 Hz	5 Hz	

Hardware Requirements

- OBDII Interface (On Board Diagnostics)
 - Vehicle Speed, RPM, Throttle Position (if avail.)

Accelerometer (dual-axis)

- Lateral and longitudinal acceleration
- GPS Sensor
 - Vehicle position and accurate time
- Data Storage Device
 - To store all the logged data
 - Image Sensor
 - Captures forward looking video
 - Yaw Rate Sensor
 - Measures turning rate of the vehicle
 - Range-finder
 - Measures following distance

Hardware Components Block Diagram

CPU

Accelerometers

Yaw Rate Gyro

Data Storage

OBDII Interpreter

Vehicle Data Logging Device

GPS

Component Layout

Component Layout

Cable Routing Guide

OBDII Standard requires port to be within 36" of steering wheel.

GPS device mounted on roof for clear view of sky and proper ground plane.

Camera Module

GPS Module

Obdll Connector Cl

CPU Module

Mounting Location Constraints

Data Logging Constraints

Image Capture Constraints

Resolution	Approx File Size (KB)	Approx Number of Images/Capacity(MB)				
Capacities	(MB)>	128	512	1024	2048	4096
VGA	32.3 KB	4,058	16,232	32,464	64,927	129,855
QVGA	11.0 KB	11,967	47,869	95,739	191,477	382,954
160x120	6.8 KB	19,361	77,443	154,886	309,771	619,543
Text	0.2 KB	613,788	2,455,154	4,910,307	9,820,615	19,641,230
Hours of Image Capture @ 1Hz						
640x480	VGA	1	5	9	18	36
320x240	QVGA	3	13	27	53	106
160x120	sub-QVGA	5	22	43	86	172
Text		170	682	1364	2728	5456

Image Capture Constraints

Resolution	Approx File Size (KB)	Approx Number of Images/Capacity(MB)				
Capacities	(MB)>	128	512	1024	2048	4096
VGA	32.3 KB	4,058	16,232	32,464	64,927	129,855
QVGA	11.0 KB	11,967	47,869	95,739	191,477	382,954
160x120	6.8 KB	19,361	77,443	154,886	309,771	619,543
Text	0.2 KB	613,788	2,455,154	4,910,307	9,820,615	19,641,230
Hours of Image Capture @ 1Hz						
640x480	VGA	1	5	9	18	36
320x240	QVGA	3	13	27	53	106
160x120	sub-QVGA	5	22	43	86	172
Text		170	682	1364	2728	5456

Storage Media Comparison

Media Type ->	CompactFlash S		SmartMedia	MMC		
Varieties	Ι	II		MMC	RS-MMC	
Maximum storage capacity, MB	8000	12000	128	4096	512	
Theoretical maximum capacity	137 GB	137 GB		128 GB		
Data read speed, MB/s	40	40	2			
Data write speed, MB/s	40	40				
Read/write cycles	00	00	1,000,000	1,000,000	00	
Media Type ->	Sony Memory Sti	ck (proprietary	v - not much hai	rdware avail)	Bonofit	a of SD
Varieties	Standard	Pro	Pro Duo	Micro	• Uses less po	ower than CF
Maximum storage capacity, MB	128	4096	4096		• Lots of 3rd	party
Theoretical maximum capacity	128 MB	32 GB			 hardware available Smaller Inexpensive cards in 	
Data read speed, MB/s	2.5	20	20	20		
Data write speed, MB/s	1.8	1.8	10		many sizes	
Read/write cycles	00	00	00	00		
Media Type ->	хD			Se	cure Digital (S	
Varieties		Туре М	Туре Н	SD	miniSD	microSD
Maximum storage capacity, MB	512	2048	1024	4096	2048	2048
Theoretical maximum capacity	512 MB	8 GB	8 GB	128 GB		
Data read speed, Mb/s	5	4	15	20		
Data write speed, Mb/s	3	2.5	9	20		
Read/write cycles	00	00	00		00	
Vehicle Data Logging Device						

Hardware

Hardware Components Block Diagram

CPU

Accelerometers

Yaw Rate Gyro

Data Storage

Vehicle Data Logging Device

GPS

Hardware Components Block Diagram

CPU

Accelerometers

Yaw Rate Gyro

Data Storage

OBDII Interpreter

Micro-Controller

Micro-Controller

Design Considerations

- Speed 44MHz
 - Adequate speed for data throughput
 *Image capture is largest constraint
- I/O Lines
 - Must have adequate I/O lines to support all devices (33)
 Rabbit has 52 I/O Pins
- Protocol Support
 - ✤ I²C, RS232, SPI, PWM Input Capture
- Programming Language
 - Assembly, Dynamic C
- Cost
 - Rabbit is actually a bit expensive, \$80.00, but Dr Papelis wanted to use it.
 - PIC is a viable option at \$10/unit

Rabbit 3220

Input/Output Lines

Device	Communication	Data Pins	Other	Total Req
GPS Device	Serial Data	2	0	2
Camera	UART	2	0	2
2-Axis Accelerometer	PWM	2	0	2
Yaw Rate Gyro	SPI	3	1	4
ELM327	Serial	2	2 (Busy/RTS)	4
Diagnostics Port	Serial	2	0	2
Future Expansion	Serial	4	2	6
Input Total				22
uALFAT	UART/SPI	6	0	6
UI LEDs (5)	PWM	0	5	5
Output Total				11
Total				33

Accelerometer Lateral & Longitudinal Accelerations

Accelerometer Lateral & Longitudinal Accelerations

Design Considerations

- Dual axis
- PWM output
 - ✤ Built-in ADC
- Range
- Cost
 - ♦ \$40.00

Vehicle Data Logging Device

ADXL213

OBDII Interface

To car's OBDII port

OBDII Interpreter

Data to µController

Vehicle Data L

OBDII Interface Vehicle RPM & Throttle Position

Design Considerations

- Compatibility
- Ease of Use
 - Uses standard AT command syntax
 - + RS232
 - Handles all the bus initiation and detection itself automatically
- Cost
 - ◆ \$30.

ELM327 Compatible with all OBDII standard protocols:

SAE J1850 PWMFordSAE J1850 VPWGMISO 9141-2 Chrysler, European, AsianISO 15765 CANall after 2008ISO 14230

Yaw-Rate Gyro

ADIS16100

Design Considerations

- Built-in ADC
 - Reduces number of components on the board
- Resolution
 - ✤ 360°/second
- Protocol Support
 - SPI Interface is fast and relatively easy
- Number of Axes
 - ✤ Single axis measurement (yaw)
- Cost
 - ✤ A bit expensive at \$50 each
- Difficulties
 - + LGA16

Data Storage Device

- Design Considerations
 - File System Format
 - FAT16
 - Speed
 - 57.5 KB/s write speed
 - **Physical Media Format**
 - Removable SD Card
 - Communication
 - **RS232**
 - Cost
 - \$40.00

µALFAT

Power Supply

LP2960

Design Considerations

- Input vs Output Voltages
 - 11-15 VDC from OBDII port must be converted to a stable 3.3 and 5 VDC for our components.
- Logic Level Shutdown
 - Will shut down PSU and attached devices with one pin
- Cost
 - ◆ \$3.50
- Internally Fused
 - 500mA internally limited current
- Automatic Thermal Limiting
 - Will shut down before heat damages components
 - A well-tested feature

Power Requirements

Part	Voltage (V)	Current (mA)	Power (mW)
Micro-Controller	3.3	255.0	841.5
Storage	3.3	5.0	16.5
Camera	3.3	15.0	49.5
Accelerometers	5.0	0.7	3.5
OBDII IC	5.0	9.0	45.0
GPS	5.0	60.0	300.0
Yaw Rate Gyro	5.0	7.0	35.0
Total			1291

Hardware Components Block Diagram

CPU

Accelerometers

Yaw Rate Gyro

Data Storage

OBDII Interpreter

Vehicle Data Logging Device

GPS

Hardware Components Block Diagram

Garmin GPS18

Geographic Position & Speed

Design Considerations

- Update Frequency
 - ↓ 1 Hz
- Communication
 - ✤ Standard NMEA over RS232
- Time To First Fix
 - ~40 seconds (cold start)
- Physical Design
 - Weatherproof, magnetic enclosure
- Cost
 - Already had one; \$80 to buy

Design Considerations Resolution

- VGA, QVGA, CIF, QCIF
- Must scale to lower resolutions to enable higher frame rates with the same throughput.
- Configurable on-the-fly
- Frame Rate
 - Only limited by communications speed
- Video Format/Compression
 JPEG output

- Communications
 RS232 @ 115.2Kb/s max
- Cost
 - ✤ \$50./module
- Wide Field of View
 - 118°

Design Considerations Resolution

- VGA, QVGA, CIF, QCIF
- Must scale to lower resolutions to enable higher frame rates with the same throughput.
- Configurable on-the-fly
- Frame Rate
 - Only limited by communications speed
- Video Format/Compression
 JPEG output

- Communications
 RS232 @ 115.2Kb/s max
- Cost
 - ✤ \$50./module
- Wide Field of View
 - 118°

Range Finder Following Distance

- Cost
 - ✤ Laser \$600
 - ✤ Microwave \$10,000
 - ✤ Budget still only \$400
- FCC Regulations

Final Product Package

- Final design is implemented on a custom fabricated printed circuit board (PCB)
- PCB is fabricated so the optional components can be added to the board or not.
 - Allows for lower cost devices with reduced functionality
- The software determines whether or not the sensors are present and log data accordingly.
 - Intelligent software control to reduce user interaction
 - Enclosure includes active cooling hardware

Software

Software Design

Sensor Boot Sequences w/ Error Handling

User Interface

Polling Multiple Sensors

Store to Removable Media Device


```
ł
   ++testCounter:
   AccelInit();
   getAccel();
   if (Accelleration.x>=-10 &&
      Accelleration.x<=10 &&
          Accelleration.y > = -10 &&
             Accelleration.y<=10)
   £
      passed=1;
      break:
   }
}
if (passed)
   return 1:
else
   return 0;
```

while (testCounter<15)

++testCounter: AccelInit(); getAccel(); if (Accelleration.x>=-10 && Accelleration.x<=10 && Accelleration.y > = -10 && Accelleration.y<=10) £ passed=1; break; } if (passed) return 1: else return 0;

while (testCounter<15)

while (testCounter<15) ++testCounter:

AccelInit(); getAccel(); < if (Accelleration.x>=-10 && Accelleration.x<=10 && Accelleration.y > = -10 && Accelleration.y<=10)

passed=1; break:

return 1: else return 0;

while (testCounter<15)

while (testCounter<15)

++testCounter: AccelInit(); getAccel(); if (Accelleration.x>=-10 && Accelleration.x<=10 && Accelleration.y > = -10 && Accelleration.y<=10) £ passed=1; break; } if (passed) return 1: else return 0;

Vehicle Data Logging Device

}

Power

***** SD Card

Camera

*

GPS Sensor

OBDII Data

- On power up system LED flashes
- each sensor LED flashes as being tested
- System LED signaled between each sensor test
- After all sensors are done testing all LEDs sequence
- A solid sensor LED with a solid system LED during testing indicates an error
- If the system light begins to flash non stop during boot up it means there is an SD failure: either not present, full, or corrupted.
- After boot up and testing each sensor flashes as it is being polled
 Vehicle Data Logging Device

<u>Software flashes sensor's</u> <u>LED upon activity</u>

Indicate sensor activity

Notify user of any sensor initialization failures printf("\nMain Function Starting");
printf("\nChecking Devices...");

```
OBDGTG = prepOBD();
yawGTG = prepYaw();
accelGTG = prepAccel();
GPSGTG = prepGPS();
```

```
flashLED1();
flashLED2();
flashLED3();
flashLED4();
flashLED5();
```

```
if (accelGTG==0)
    WrPortI(PEB3R, NULL, OxFF);
if (OBDGTG==0)
    WrPortI(PEB4R, NULL, OxFF);
if (yawGTG==0)
    WrPortI(PEB5R, NULL, OxFF);
if (camGTG==0)
    WrPortI(PEB6R, NULL, OxFF);
if (GPSGTG==0)
    WrPortI(PEB7R, NULL, OxFF);
```


Indicate sensor activity

Notify user of any sensor initialization failures printf("\nMain Function Starting");
printf("\nChecking Devices...");

```
OBDGTG = prepOBD();
yawGTG = prepYaw();
accelGTG = prepAccel();
GPSGTG = prepGPS();
```

```
flashLED1();
flashLED2();
flashLED3();
flashLED4();
flashLED5();
```

```
if (accelGTG==0)
    WrPortI(PEB3R, NULL, 0xFF);
if (OBDGTG==0)
    WrPortI(PEB4R, NULL, 0xFF);
if (yawGTG==0)
    WrPortI(PEB5R, NULL, 0xFF);
if (camGTG==0)
    WrPortI(PEB6R, NULL, 0xFF);
if (GPSGTG==0)
    WrPortI(PEB7R, NULL, 0xFF);
```


Indicate sensor activity

Notify user of any sensor initialization failures printf("\nMain Function Starting");
printf("\nChecking Devices...");

```
OBDGTG = prepOBD();
yawGTG = prepYaw();
accelGTG = prepAccel();
GPSGTG = prepGPS();
```

```
flashLED1();
flashLED2();
flashLED3();
flashLED4();
flashLED5();
```

```
if (accelGTG==0)
    WrPortI(PEB3R, NULL, OxFF);
if (OBDGTG==0)
    WrPortI(PEB4R, NULL, OxFF);
if (yawGTG==0)
    WrPortI(PEB5R, NULL, OxFF);
if (camGTG==0)
    WrPortI(PEB6R, NULL, OxFF);
if (GPSGTG==0)
    WrPortI(PEB7R, NULL, OxFF);
```


Indicate sensor activity

Notify user of any sensor initialization failures printf("\nMain Function Starting");
printf("\nChecking Devices...");

```
OBDGTG = prepOBD();
yawGTG = prepYaw();
accelGTG = prepAccel();
GPSGTG = prepGPS();
```

```
flashLED1();
flashLED2();
flashLED3();
flashLED4();
flashLED5();
```


Intelligent Power Control

(Sleepy Mode)

Sleepy Mode Demo

- Device powers down when RPM = 0
- Accelerations wake the unit up to check the RPM status as the accelerometer can be polled using less power

Sensor Polling The need for multitasking.

Multitasking Timing Illustration

while(1){
 costate { ... }
 costate { ... }
 costate { ... }
}

costate descriptor

Resides within infinite loop

<u>costate flow proceeds in three</u> <u>ways</u>

costate{ statement 1 statement 2 waitfor(condition) statement 3 statement 4

🍑 Ini

Initial entry into costate

- Statement 1 & 2 executed
- waitfor evaluated to zero (0)
- Flow jumps out of the costate

Polling Sensors

Multitasking

costate{ statement 1 statement 2 waitfor(condition) statement 3 statement 4

- Flow jumps directly to waitfor
- waitfor evaluated to zero (0)
- Flow jumps out of the costate

costate{ statement 1 statement 2 waitfor(condition) statement 3 statement 4

Subsequent entry into costate

- Flow jumps directly to waitfor
- waitfor evaluated to one (1)
- Statement 3 & 4 executed
- System reference to costate reset

costate{ statement 1 statement 2 waitfor(condition) statement 3 statement 4

After costate reference is reset

- Next cycle will be executed as an initial entry
- Cycle starts anew
- Statement 1 & 2 executed
- waitfor evaluated to zero (0)

Allows Rabbit to devote time to other tasks while...

• Waiting for ELM327 Ready to Receive Flag

• Waiting for ELM327 to fill buffer with data

cofunc int getThrot()

```
char readSentence[25];
char OBDresponse[5];
int carThrot;
int x;
```

```
carThrot=1;
```

```
serErdFlush();
serEwrFlush();
waitfor(0==BitRdPortI(PGDR, 4));
serEputs("01 11\r");
waitfor(20==serErdUsed());
serEread(readSentence, 20, 10);
```

<u>Allows Rabbit to devote time</u> <u>to other tasks while...</u>

• Waiting for ELM327 Ready to Receive Flag

• Waiting for ELM327 to fill buffer with data

cofunc int getThrot()

```
char readSentence[25];
char OBDresponse[5];
int carThrot;
int x;
```

```
carThrot=1;
```

```
serErdFlush();
```

```
serEwrFlush();
```

```
waitfor(O==BitRdPortI(PGDR, 4));
```

```
serEputs("01 11\r");
```

```
waitfor(20==serErdUsed());
```

serEread(readSentence, 20, 10);

<u>Allows Rabbit to devote time</u> <u>to other tasks while...</u>

• Waiting for ELM327 Ready to Receive Flag

• Waiting for ELM327 to fill buffer with data

cofunc int getThrot()

```
char readSentence[25];
char OBDresponse[5];
int carThrot;
int x;
```

```
carThrot=1;
```

```
serErdFlush();
serEwrFlush();
waitfor(0==BitRdPortI(PGDR, 4));
serEputs("01 11\r");
waitfor(20==serErdUsed());
serEread(readSentence, 20, 10);
```

Storing Data to SD Card

New text file is created on system boot

system boots each time ignition is cycled

Ş

Each cycle's data is appended to this text file

								#00_00_0000
UTC Time	\$\$ UT	C Position(La	t,Lon)	\$\$ Yav	v \$\$	Accel(x,y)	00:00:02*FFD8FFE000114A464946000102030405060708090
\$\$ OBD(RPM, Speed, Thi DBD(RPM, Speed, Thi	rottle)-						785C666864FFDB004301121212161616301A1A306442384264
								00000000000000102030405060708090A0BFFC400B510000201
04-19-2007 07:32:36	\$\$ 28	25.463701 N	081 15.402101 W	\$\$ +01	L \$\$	0.63	-0.55	363738393A434445464748494A535455565758595A63646566
\$\$ 0812 000 000-								E1E2E3E4E5E6E7E8E9EAF1F2F3F4F5F6F7F8F9FAFFC4001F01
04-19-2007 07:32:36	\$\$ 28	25.463701 N	081 15.402101 W	\$\$ +01	L \$\$	0.02	0.03	1-
\$\$ 0812 000 000-								322328108144291A1B1C109233352F0156272D10A162434E12
04-19-2007 07:32:36	\$\$ 28	25.463701 N	081 15.402101 W	\$\$ +01	L \$\$	0.02	0.03	999AA2A3A4A5A6A7A8A9AAB2B3B4B5B6B7B8B9BAC2C3C4C5C6
\$\$ 0812 000 000-								48E69314F229B8A0618A314B45218014B8A4CD2E6900A2A64A
04-19-2007 07:32:36	\$\$ 28	25.463701 N	081 15.402101 W	\$\$ +01	L SS	0.02	0.03	A598E147535CFCD235C4CD230EBD07A5696A92958D621FC7C9
\$\$ 0812 000 000-								1E7DDA605FEEB1AD5AE7FC2AE5ADEE14FF00080FEB5D054D89
04-19-2007 07:32:36	\$\$ 28	25.463701 N	081 15.402101 W	\$\$ +90	22.6	0.02	0.03	8-
\$\$ 0812 000 000_		201100102 11				0.02	0.00	A43466B31851499A4CD201D4F5A8F34A1A901614D4AA6AAAB5
04-19-2007 07:32:36	CC 28	25 463701 N	081 15 402101 W	¢¢	a .ce	a a2	0 03	CD280E1C803F0CD7454D753196E14514532428A28A6073C501
¢¢ 0017 000 000	33 20	25.405/01 1	001 13.402101 #	33 TO		0.02	0.05	E1404A0E509A70E0064404447925C7248E3A600FC7F0AECC59
33 0012 000 000- 04 10 2007 07-22-26	66 20	25 4C2704 N	001 1E 400101 W	ee . 0:		0.00	0.02	71918E4567D9DB9B9620B615464D6C12ACEA57A13FD2B29EC6
04-19-2007 07:32:30	33 28	25.403701 N	081 15.402101 W	33 +0.	1.33	0.02	0.05	39AA2B4828A291890A48EB564ADC5A2A389CBAE4AE2A4A10E4
22 0812 000 000- 22 0812 000 000-				** ~				
04-19-2007 07:32:48	\$\$ 28	25.463301 N	081 15.399800 W	35 +01	1 33	0.02	0.03	BD0B5B8756B70CAA125CE1E3DD92A79F6F403FC8AF2ECD5CD3
\$\$ 0812 000 000-								983819A18F48056E20E27201030647623207E19055A8984891
04-19-2007 07:32:48	\$\$ 28	25.463301 N	081 15.399800 W	\$\$ +01	L \$\$	0.02	0.03	62AU8499UC9F3286033903A9C0E2B3847B9A4E508F53037EEE
								304U349A09A69AA2C334B494B400668CU1450075FE03BF8E3B

Image Capture

- images stored in one text file per trip
- images sorted by time within text file

• ASCII data is sorted and converted to JPEGs via web application

Software to Do

Implement System Configurability

• Allow user to edit text file on SD to change system settings

Fully Incorporate Intelligent Power Supply

Progress & Budget

Project Progress

Work Breakdown

Budget

Misc Components Final Fab Parts **PCBs PCB** Software Yaw Rate Gyro Rabbit 3220 Core TC Camera Accelerometer DOSonChip SD Module RS232 Camera 2GB SD Card uAlFat SD Module Enclosure **UI LEDs** Mounting Method GPS 512MB SD Card **OBDII ELM327**

Miscellaneous Costs

Capacitors, power regulators, wire, perf board, tools, solder, SOIC adapters, DIP adapters, diodes, transistors, DB9 connectors, markers, PCB etching materials, pre-made breakout boards, RS232 level shifters, breadboards, test leads, and more...

Budget Specifics

Part	Actual Cost	Our Cost	# Acquired	Total Spent	
GPS Device	\$80.00	\$0.00	2	\$0.00	
CMOS Image Sensor	\$40.00	\$40.00	2	\$80.00	
RS232 Camera	\$50.00	\$50.00	1	\$50.00	
2-Axis Accelerometer	\$40.00	\$40.00	2	\$80.00	
Yaw Rate Gyro	\$50.00	\$50.00	2	\$100.00	
ELM327	\$35.00	\$0.00	2	\$0.00	
DOSonChip	\$40.00	\$40.00	2	\$80.00	
uALfat	\$40.00	\$40.00	2	\$80.00	
UI LEDs (4)	\$10.00	\$10.00	0	\$0.00	
2GB SD Card	\$43.00	\$43.00	1	\$43.00	
512MB SD Card	\$20.00	\$0.00	1	\$0.00	
Rabbit 3220 Core	\$80.00	\$80.00	1	\$80.00	
Misc Components	??	\$251.60	1	\$251.60	
Enclosure	\$30.00	\$30.00	0	\$30.00	
Mounting Method	\$5.00	\$5.00	0	\$0.00	
PCB Software	\$140.00	\$140.00	1	\$140.00	
Final Fab Parts (3)	\$236.17	\$236.17	1	\$236.17	
PCBs (5)	\$217.35	\$217.35	1	\$217.35	
Parts Totals	\$455.00	\$819.60	22	\$1,468.12	

Device Reproduction Costs

Required Parts	Actual Cost			
Rabbit 3220 Core	\$80.00			
Accelerometer	\$15.00			
ELM327	\$35.00			
GPS Device	\$80.00			
512MB SD Card	\$20.00			
uALfat	\$40.00			
Misc Components	\$30.00			
Required Parts Total	\$300.00			
Camera	\$40.00			
Yaw Rate Gyro	\$50.00			
Parts Totals	\$390.00			

Without optional components, the total cost of fabrication is easily within the budget constraints.

With optional components we must have a large production run in order to meet the specified system cost.

We suggest in this instance the Rabbit be swapped for a PIC thereby saving \$80, about the cost of the additional components.

Number of Boards	2	4	6	8	10	15
PCB Fabrication	\$130.00	\$130.00	\$135.00	\$140.00	\$145.00	\$155.03
Cost/Board	\$65.00	\$32.50	\$22.50	\$17.50	\$14.50	\$10.34
Totals	\$455.00	\$422.50	\$412.50	\$407.50	\$404.50	\$400.34
w/o opt components	\$365.00	\$332.50	\$322.50	\$317.50	\$314.50	\$310.34
Difficulties

- LGA 16 package (yaw rate gyro) was difficult to work with
- SPI driver had to be rewritten
- 24 Pin ZIF (first camera) also difficult to work with
- Hardware discontinued mid-development (first camera)
- Reworking storage device due to insufficient write speed (DOSonCHIP)
- Thermal dissipation issues with varying voltages

Vehicle Data Logging Device

Temperature Analysis

- On Heatsink No Enclosure
- Above Heatsink No Enclosure
- On Heatsink With Enclosure
 - Above Heatsink With Enclosure

PSU Thermal

Future Progress

- Optimize Software
- Improve Image Capture
- Implement System Configurability
- Further Calibrate Sensors
- Optimize PCB for better cooling
 - ★ Reduce Size of Device

Demo!

.398000 W \$\$ +0 .398000 W \$\$ +0 .398000 W \$\$ +0 .398000 W \$\$ +0	00 \$\$ -0.34 0.04 00 \$\$ -0.34 0.04 00 \$\$ -0.34 0.04 00 \$\$ -0.34 0.03		ation
$(.398000 \ W \ \$\$ + 0)$ $(.398000 \ W \ \$\$ + 0)$ $(.398000 \ W \ \$\$ + 0)$ $(.397901 \ W \ \$\$ + 0)$ $(.397799 \ W \ \$\$ + 0)$ $(.397790 \ W \ \$\$ + 0)$ $(.397790 \ W \ \$\$ + 0)$ $(.397790 \ W \ \$)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SS SS SS SS SS SS SS SS SS SS SS SS SS	

500	W	\$\$	+00	\$\$	0.45	-0.01	\$\$
500	W	\$\$	+00	\$\$	0.45	-0.00	\$\$
500	W	\$\$	+01	\$\$	0.45	-0.01	\$\$
500	W	\$\$	+00	\$\$	0.45	-0.01	\$\$
500	W	\$\$	+00	\$\$	0.45	-0.01	\$\$
500	W	\$\$	+00	\$\$	0.45	-0.01	\$\$
500	W	\$\$	+00	\$\$	0.45	-0.01	\$\$
500	W	\$\$	+01	\$\$	0.45	-0.01	\$\$
500	W	\$\$	+01	\$\$	0.45	-0.01	\$\$
500	W	\$\$	+01	\$\$	0.45	-0.01	\$\$
500	W	\$\$	+01	\$\$	0.45	-0.01	\$\$
401	W	\$\$	+00	\$\$	0.44	-0.01	\$\$
401	W	\$\$	+01	\$\$	0.44	-0.01	\$\$
401	W	\$\$	+00	\$\$	0.45	-0.01	\$\$
401	W	\$\$	+01	\$\$	0.45	-0.01	\$\$
401	W	\$\$	+00	\$\$	0.45	-0.01	\$\$
401	W	\$\$	+00	\$\$	0.45	-0.01	\$\$
401	W	\$\$	+00	\$\$	0.44	-0.01	\$\$
401	W	\$\$	+00	\$\$	0.44	-0.01	\$\$
401	W	\$\$	+00	\$\$	0.44	-0.01	\$\$
401	W	\$\$	+00	\$\$	0.44	-0.00	\$\$
401	W	\$\$	+00	\$\$	0.42	0.00	\$\$
401	W	\$\$	+01	\$\$	0.35	0.01	\$\$
4 01	ωř.	ፋፍ	± 01	¢¢	0 26	0 01	\$ \$

- 5	+01	\$\$	0.04	-0.52	\$\$	0824	00
- 5	+01	\$\$	0.04	-0.52	\$\$	0837	00
5	+01	\$\$	0.04	-0.53	\$\$	0837	00
- 5	+01	\$\$	0.04	-0.52	\$\$	0837	00
-)	+01	\$\$	0.04	-0.52	\$\$	0837	00
5	+01	\$\$	0.04	-0.53	\$\$	0837	00
5	+01	\$\$	0.04	-0.53	\$\$	0837	00
))	+01	\$\$	0.04	-0.53	\$\$	0824	00
- 5	+01	\$\$	0.04	-0.53	\$\$	0824	00
- 5	+01	\$\$	0.04	-0.53	\$\$	0824	00
-)	+01	\$\$	0.04	-0.53	\$\$	0824	00
5	+00	\$\$	0.04	-0.53	\$\$	0824	00
5	+00	\$\$	0.04	-0.53	\$\$	0824	00
5	+01	\$\$	0.04	-0.53	\$\$	0824	00
5	+01	\$\$	0.05	-0.53	\$\$	0824	00
5	+01	\$\$	0.05	-0.53	\$\$	0824	00
5	+01	\$\$	0.05	-0.53	\$\$	0824	00
6	+00	\$\$	0.05	-0.53	\$\$	0824	00
5	+00	\$ \$	0.05	-0.52	\$\$	0824	00
5	+00	\$ \$	0.04	-0.52	\$\$	0812	00
5	+00	\$ \$	0.04	-0.51	\$\$	0812	00
6	+00	\$ \$	0.03	-0.47	\$ \$	0812	00
–	-1 -1	σσ	$\sim \sim 1$	A_1	0 0	<u></u>	$-\alpha \alpha$

		+ +		++			+ +		
9	W	\$\$	+00	\$\$	-0.01	0.49	\$\$	0837	00
9	W	\$\$	+00	\$\$	-0.01	0.49	\$\$	0837	00
9	W	\$\$	+00	\$\$	-0.01	0.50	\$\$	0824	00
9	W	\$\$	+01	\$\$	-0.01	0.49	\$\$	0824	00_
9	W	\$\$	+00	\$\$	-0.01	0.49	\$\$	0824	00
9	W	\$\$	+00	\$\$	-0.01	0.49	\$\$	0824	00
9	W	\$\$	+00	\$\$	-0.01	0.48	\$\$	0824	00
9	W	\$\$	+00	\$\$	-0.01	0.48	\$\$	0824	00
9	W	\$\$	+00	\$\$	-0.01	0.48	\$\$	0824	00
9	W	\$\$	+00	\$\$	-0.01	0.48	\$\$	0824	00
9	W	\$\$	+00	\$\$	-0.01	0.48	\$\$	0824	00
9	W	\$\$	+00	\$\$	-0.01	0.48	\$\$	0824	00
9	W	\$\$	+00	\$\$	-0.01	0.49	\$\$	0824	00
9	W	\$\$	+00	\$\$	-0.01	0.48	\$\$	0824	00
9	W	\$\$	+00	\$\$	-0.01	0.48	\$\$	0824	00
9	W	\$\$	+00	\$\$	-0.01	0.48	\$\$	0824	00
9	W	\$\$	+00	\$ \$	-0.01	0.48	\$\$	0824	00
9	W	\$\$	+00	\$\$	-0.01	0.48	\$\$	0824	00
9	W	\$\$	+01	\$\$	-0.01	0.48	\$\$	0824	00
9	W	\$\$	+01	\$\$	-0.01	0.48	\$\$	0824	00
9	W	\$\$	+01	\$\$	-0.01	0.48	\$\$	0824	00
9	W	\$ \$	+00	\$ \$	-0.01	0.48	\$ \$	0824	00
9	W	\$ \$	+00	\$ \$	-0.01	0.48	\$\$	0824	00
9	W	\$\$	+00	\$\$	-0.01	0.48	\$\$	0824	00
9	W	\$ \$	+00	\$ \$	-0.01	0.48	\$\$	0824	00
9	W	\$\$	+00	\$\$	-0.01	0.48	\$\$	0824	00
					~ ~ ~ ~				

Data Output

Yaw Rate \$\$ X Y \$\$ RPM \$\$ Speed \$\$ Throttle Pos.

+30 \$\$ \$\$ -0.12 -0.35 \$\$ 1162 012 000 \$\$ +31 \$\$ -0.12 -0.36 \$\$ 1162 012 000 \$\$ +31 §\$ -0.12 -0.37 \$\$ 1162 012 000 \$\$ \$\$ \$\$ \$\$ +31 §\$ -0.13 -0.38 \$\$ 1162 012 000 +32 <mark>\$</mark>\$ -0.13 -0.38 **\$**\$ 1149 012 000 \$\$ -0.13 -0.39 \$\$ 1149 012 +32 000 **\$\$** -0.13 -0.39 **\$\$** 1149 012 +33 000 \$\$ 94 –0.14 –0.41 💁 1149 012 00 +32 • Note harder \$\$ +33 <mark>\$\$</mark> -0.14 -0.40∢ \$\$ \$\$ +33 §\$ -0.14 -0.40 ↓ 1149 012 • acceleration <mark>\$\$</mark> -0.14 -0.39 **\$\$** 1062 012 | +34+35 **\$\$** -0.14 -0.39 **\$\$** 1062 012 000 +35 \$\$ -0.14 -0.38 \$\$ 1062 012 000 \$\$ -0.14 -0.37 \$\$ 1062 011 \$\$ -0.14 -0.37 \$\$ 1062 011 +36 000 +36 000 +36 \$\$ -0.15 -0.37 \$\$ 1062 011 000 \$\$ -0.15 -0.37 \$\$ 1062 011 +36000 \$\$ <mark>\$</mark>\$ -0.15 -0.36 **\$\$** 0999 011 +36000 Tightening Turn

Data Log File

Θ	💛 😁						DL190732.TXT
	UTC Time	ss u	TC Position	(Lat,Lon)	\$\$ Yaw \$\$	Accel(x,y) -	,
	\$\$ OBD(RPM, Speed, Thr	ottl	.e)				
	04-19-2007 07:32:36	\$\$ 2	8 25.463701	N 081 15.402101	W \$\$ +01 \$\$	0.63 -0.55	
	\$\$ 0812 000 000-						
	04-19-2007 07:32:36	SS 2	8 25.463701	N 081 15.402101	W \$\$ +01 \$\$	0.02 0.03 -	,
	\$\$ 0812 000 000- 04-10-2007 07-22-26		0 25 462701	N 001 15 402101	w ee .01 ee	0.07 0.07	
	\$\$ 0812 000 000_	33 4	.6 25.405701	N 061 15.402101	1 H 33 +01 33	0.02 0.03 -	
	04-19-2007 07:32:36	SS 2	8 25,463701	N 081 15,402101	W \$\$ +01 \$\$	0.02 0.03 -	
	\$\$ 0812 000 000-						
	04-19-2007 07:32:36	SS 2	8 25.463701	N 081 15.402101	W \$\$ +00 \$\$	0.02 0.03	
	\$\$ 0812 000 000-						
	04-19-2007 07:32:36	SS 2	8 25.463701	N 081 15.402101	W \$\$ +00 \$\$	0.02 0.03 -	
	\$\$ 0812 000 000-						
	04-19-2007 07:32:36	SS 2	8 25.463701	N 081 15.402101	W \$\$ +01 \$\$	0.02 0.03 -	
	33 0812 000 000- 04-10-2007 07:32:48		8 25 463301	N 081 15 300800	W	0 02 0 03	
	\$\$ 0812 000 000-		.0 23.403301	N 001 15.555000	, n 33 +01 33	0.02 0.05	
	04-19-2007 07:32:48	SS 2	8 25.463301	N 081 15.399800	W \$\$ +01 \$\$	0.02 0.03 -	
	\$\$ 0812 000 000-						
	04-19-2007 07:32:48	SS 2	8 25.463301	N 081 15.399800	W \$\$ +00 \$\$	0.02 0.03 -	,
	\$\$ 0812 000 000-						
	04-19-2007 07:32:48	SS 2	8 25.463301	N 081 15.399800	0 W \$\$ +00 \$\$	0.02 0.03 -	
	\$\$ 0812 000 000-						
	04-19-2007 07:32:48	SS 2	8 25.463301	N 081 15.399800	0 W \$\$ +00 \$\$	0.02 0.03 -	
	33 0812 000 000- 04-10-2007 07:32:48		8 25 463301	N 081 15 200800	W	0 02 0 03	
	\$\$ 0812 000 000-		.0 23.403301	N 001 15.555000		0.02 0.05	
	04-19-2007 07:32:48	SS 2	8 25.463301	N 081 15.399800	W \$\$ +01 \$\$	0.02 0.03 -	
	\$\$ 0812 000 000-						
	04-19-2007 07:32:48	SS 2	8 25.463301	N 081 15.399800	W \$\$ +01 \$\$	0.02 0.03 -	,
	\$\$ 0812 000 000-						
	04-19-2007 07:32:48	SS 2	8 25.463301	N 081 15.399800) W \$\$ +01 \$\$	0.02 0.03 -	
	\$\$ 0812 000 000-			N 004 45 200000		0.00.000	
	04-19-2007 07:32:49 \$6,0774,000,000	SS 2	8 25.463499	N 081 15.399600) W 35 +01 55	0.02 0.03 -	
	04-19-2007 07-32-49	(()	8 25 463499	N 081 15 399600	W \$\$ 101 \$\$	0 03 0 03	
	\$\$ 0774 000 000-		.0 23.403435	1 001 15.555000		0.05 0.05	
	04-19-2007 07:32:49	SS 2	8 25.463499	N 081 15.399600	W \$\$ +01 \$\$	0.03 0.03 -	
	\$\$ 0774 000 000-						
	04-19-2007 07:32:49	SS 2	8 25.463499	N 081 15.399600	W \$\$ +00 \$\$	0.03 0.03 -	
	\$\$ 0774 000 000-						
	04-19-2007 07:32:50	SS 2	8 25.463701	N 081 15.399400	0 W \$\$ +00 \$\$	0.02 0.03 -	
	33 07/4 000 000- 04-10-2007 07-22-50		0 25 462704	N 001 15 200400	w ee	0.02 0.03	
	\$\$ 0824 000 000-	33 L	.0 25.405/01	1 001 15.599400	/ II 33 +01 33	0.03 0.03 -	

Picture Log File

PLOG1377D.TXT

*00-00-0000 -

 $\Theta \Theta \Theta$

00:00:02*FFD8FFE000114A464946000102030405060708090AFFDB004300100C0C0E0C0A100E0E0E1212101418281A181616183224261E283A343E3C3A34383840485C4E4044584638385 785C666864FFDB004301121212161616301A1A30644238426464646464646464646464646464646464646
322328108144291A1B1C109233352F0156272D10A162434E125F11718191A262728292A35363738393A434445464748494A535455565758595A636465666768696A737475767778797A828 999AA2A3A4A5A6A7A8A9AAB2B3B4B5B6B788B9BAC2C3C4C5C6C7C8C9CAD2D3D4D5D6D7D8D9DAE2E3E4E5E6E7E8E9EAF2F3F4F5F6F7F8F9FAFFC0001108008000A003012200021101031101 48E69314F229B8A0618A314B45218014B8A4CD2E6900A2A64A8454B19A00B71D5A4AA919AB28D4C4595A78A895A9E1A988EDEC2432D842E4E72B566A868ADBB4987DB23F535788C906B3E9 A598E147535CFCD235C4CD230EBD07A5696A92958D621FC7C9FC2B3074AB8A3482D2E702C39C5308A99D706A1231435A1284A28A2914145145201454886A2A7A9A00B686AC235534353AB5 1E7DDA605FEEB1AD5AE7FC2AE5ADEE14FF000B0FEB5D054D8996E14514532428A28A00C6BF666BD704F0A001F95448BB980F5A6CB26F95DCF724D4962E24B8C62B45A2374B43829C056C55
A43466B31851499A4CD201D4F5A8F34A1A901614D4AA6AAAB55B88855421B2C7A8C74A5276571C55D8F8999D73B4834F9321390696495A389994608154E3BC794E0F4A9526CA7048EE3C29 CD2B0E1C803F0CD7454D753196E14514532428A28A6073C501157F4DB5441E6753DAAACA9B6465F438AD5B45DB6EB54DE86F27A5CF2D9DF26AAB1A748D9351D5DF420334D66DAA4D2D2119 E14D4ADE5D9A7DE0064404447925C7248E3A600FC7F0AECC59DB8E918FCCD1A7521C9DEC78D79A7FBBFAD39652481B71F8D7B27D961FEE7EA6B375CD2FEDBA54D6D0111B48319EB9208207 71918E4567D9DB9B9620B615464D6C12ACEA57A13FD2B29EC6D4F712440C8CA46723A7AD531008CE44257FE060D6832E73DC567F9655BFE3D367BF9B9ACE37359A3D174180DB69C909FBC0 39AA2B4828A291890A48EB564ADC5A2A389CBAE4AE2A4A10E4ACEC655DA8172E07D6B4A218894553BF401D5C753D6AEC7FEAC553D8A7F0A3C758F34DCD0D4C355701F9A426999A33401341
4 BDØB5B8756B70CAA125CE1E3DD92A79F6F403FC8AF2ECD5CD33529B4BBB13C5923A3A67018504C95CF5D0C1864547708D242C8B8C9EF5CE69BE20D4F5287CFB5D1C4880ED63F6A51CFD08A 9B3819A18F4BD56E2DE272D103C647623207E19C55A8984891380067353F88E39EE6FC3FD80C12AFDFFDE2B6470474FC7F3A86D626114098C119C8A9A966AE6D4F72427159426B62E36CD2 62AD8499DC9F3286033903A9C0E2B3847B9A4E5D8F53D37EEE7DAAFD73F61A83A6B09A6945DE80F9A43671C640AE8288688C6A3BBB85145156408001D052D14530643731F9909C0CB0E453 304D349A09A69AA2C334B4948400668CD1450075FE03BF8E3BAB8B291B0F300D10C75C673FA1FD2BBCAF1FD32E5AD3538275B9FB3152479DE5EFDA08209C77EB5D35DF886EE0B612DBEBD0 B1775CD83539D9A400F00AE0F1F28AC99B64103BB4BB245FBA36E7AD67DF6B606A6D7904AD3CB8F924618D99183C1EBE959725C4B700CB23EE7CF19E28DC6AE8B4DA832CB22C1B8F9B80C7
5AD1148D61166195DA720739E3DAB362196C9A6D5D149D8ED7C3769756DACDAC9743E69D247DD9C9246473F4AEE6B92B2B5169E314895B2162D88F4F9074AEB6A086145145020A28A2800A 34868A6682E696928A005CD1494B400521A28A77018466A472BF65455C67273FA53714633C668B81674CBB1672B4BB32F8C06CE31EB4DB452F77E493B558E48033D0669DA6DAC772CC5FEE 9A97A2B86EAC753667ED1E258EEF6ED3247B8AE73B7E4518CFE15D3573BE1DBA96F02CF719F31B386C603750781F415D0EE14A4947416AC5A4CD0477A42703148A490A0F38A5A414B4C4D2 E18755F4A9A440E854D73B286B798E0E0F634D2B9492944F35349521E951E6A891696968A004A5A5C52E2900DC518A7EDA6BFCAA48A603714A91EE941E98EB491032C91A1C9DCC01FC4D5C D21B8F2C0C061C7E15A5024B2EA70A8CB0909180327A1158DE4400E7ED673FF5CCD5DB591E4BD86DD48676C1572A39C8CF43EC6A5AD06AEDD91DAF86E1789FCA2C1961CA823BE727FC3F3A
0471FCBF5ADF0C1C71C5672776696D4703902949151676E714F5396C9A49835D472E7BD3B34C2E0D566BD884C62279AAB872B65B0C0F4ACAD4AD8B7CCA2B4E3DA1723BD23A075C1A130564 00:00:06*FFD8FFE000114A464946000102030405060708090AFFDB004300100C0C0E0C0A100E0E0E1212101418281A181616183224261E283A343E3C3A34383840485C4E4044584638385 785C666864FFDB004301121212161616301A1A30644238426464646464646464646464646464646464646
322328108144291A1B1C109233352F0156272D10A162434E125F11718191A262728292A35363738393A434445464748494A535455565758595A636465666768696A737475767778797A828 999AA2A3A4A5A6A7A8A9AAB2B3B4B5B6B7B8B9BAC2C3C4C5C6C7C8C9CAD2D3D4D5D6D7D8D9DAE2E3E4E5E6E7E8E9EAF2F3F4F5F6F7F8F9FAFFC0001108008000A003012200021101031101 48A4A795A6E28B0C4C52D18A314AC31696928A2C03854C86A015325005B8CD5A4AA695650D3132D2E29E0D42A6A406811DBD84865B085C9CE56ACD67E8ADBB4987DB23F5357C8C907D2A3D 598E1475358134AD713348DC67A0F4AD2D5242225887F1F27F0ACC0A715515D4D20B4B9C0B75A61A99D706A12314DA120A4A31454B28296928A4028352A1A841A916802D230AB08D8AA686 1DBF87A4DFA605FEEB1FE75AB5CFF855C9B6B853D987F5AE82A4996E14514532428A28A00C6BF766BC707EEA8007E59A8D006602992BEF95DCF724D4962C24 <u>B8C015A2D11BA5A1C14F80C4</u>
3454300A4CD14953601734F53CD474E068193AB54CADDAAAA9AB71614210D963D463A526EC87157761D13B38CED20FA53E424274A749234713328C102A9C776F29C1A9526CA70B1DC784CE 523E57200FC335D1535BB3196E145145048514514C0E748C8AD0D32D954193A9ED55648F6BB2FA1C56ADA26CB75F7AB7B1B49E8796CF265AAA93934E91B26A3CD55F426E04D359B6A934EA 2F0A6A56F36CB0BC00C883111E4971C9238E9802BB31676E3A463F334F4B6A4393BD8F1BF34FF77F5A559496C6DFD6BD93ECB0FF0073F5359BAE697F6DD2A7B680F96D20C67AE482081F89

Post Processing Images

$\Theta \Theta \Theta$	http://kfiducia.com/SDP07/
the second seco	^ Q- Google
upload a file	
Choose File no file selected	
Submit	
not running uploaded files <u>view images</u>	size
•	

Thank you.